IDEAS home Printed from
   My bibliography  Save this article

Approximation of stationary solutions of Gaussian driven stochastic differential equations


  • Cohen, Serge
  • Panloup, Fabien


We study sequences of empirical measures of Euler schemes associated to some non-Markovian SDEs: SDEs driven by Gaussian processes with stationary increments. We obtain the functional convergence of this sequence to a stationary solution to the SDE. Then, we end the paper by some specific properties of this stationary solution. We show that, in contrast to Markovian SDEs, its initial random value and the driving Gaussian process are always dependent. However, under an integral representation assumption, we also obtain that the past of the solution is independent of the future of the underlying innovation process of the Gaussian driving process.

Suggested Citation

  • Cohen, Serge & Panloup, Fabien, 2011. "Approximation of stationary solutions of Gaussian driven stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 121(12), pages 2776-2801.
  • Handle: RePEc:eee:spapps:v:121:y:2011:i:12:p:2776-2801
    DOI: 10.1016/

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Lemaire, Vincent, 2007. "An adaptive scheme for the approximation of dissipative systems," Stochastic Processes and their Applications, Elsevier, vol. 117(10), pages 1491-1518, October.
    2. Gilles Pag`es & Fabien Panloup, 2007. "Approximation of the distribution of a stationary Markov process with application to option pricing," Papers 0704.0335,, revised Sep 2009.
    3. Crauel, Hans, 1993. "Non-Markovian invariant measures are hyperbolic," Stochastic Processes and their Applications, Elsevier, vol. 45(1), pages 13-28, March.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Cohen, Serge & Panloup, Fabien & Tindel, Samy, 2014. "Approximation of stationary solutions to SDEs driven by multiplicative fractional noise," Stochastic Processes and their Applications, Elsevier, vol. 124(3), pages 1197-1225.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:121:y:2011:i:12:p:2776-2801. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.