IDEAS home Printed from https://ideas.repec.org/a/eee/reveco/v103y2025ics1059056025007385.html
   My bibliography  Save this article

The AI Redemption: How technology is rewriting the rules of cross-industry labor mobility

Author

Listed:
  • Zhang, Su
  • Wang, Xiaolin
  • Xia, Yan
  • Wang, Huijuan

Abstract

This study considers the evolution and iteration of digital technology, conducting both theoretical and empirical research on the effects of information technology and artificial intelligence technology on cross-industry labor mobility. Theoretically, we construct a general equilibrium model that includes labor and digital technology to analyze the intrinsic mechanisms by which digital technology affects cross-industry labor mobility. Empirically, using the probit model and the instrumental variable approach, we find robust evidence of a significant positive effect of digital technology on cross-industry labor mobility through the pooled four-wave data from the China Family Panel Studies (CFPS) from 2014 to 2020. The findings indicate that digital technology significantly promotes cross-industry labor mobility. Mechanism analysis reveals that information technology, represented by computers, drives low-skilled labor towards non-skill-intensive industries through substitution and productivity effects, while artificial intelligence technology promotes the flow of both low-skilled and high-skilled labor towards skill-intensive industries through “de-skilling” and “re-skilling”. The impact of digital technology on cross-industry labor mobility varies significantly across different genders, the type of hukou, age, and employment types. Further mechanism analysis suggests that digital technology facilitates higher wage gains by promoting cross-industry labor mobility.

Suggested Citation

  • Zhang, Su & Wang, Xiaolin & Xia, Yan & Wang, Huijuan, 2025. "The AI Redemption: How technology is rewriting the rules of cross-industry labor mobility," International Review of Economics & Finance, Elsevier, vol. 103(C).
  • Handle: RePEc:eee:reveco:v:103:y:2025:i:c:s1059056025007385
    DOI: 10.1016/j.iref.2025.104575
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1059056025007385
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.iref.2025.104575?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reveco:v:103:y:2025:i:c:s1059056025007385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620165 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.