IDEAS home Printed from https://ideas.repec.org/a/eee/reveco/v103y2025ics1059056025005660.html
   My bibliography  Save this article

Value-at-risk forecasting- based on textual information and a hybrid deep learning-based approach

Author

Listed:
  • Cao, Yangfan
  • Choo, Wei Chong
  • Matemilola, Bolaji Tunde

Abstract

The recent rise in deep learning and natural language processing (NLP) applications has notably improved productivity across different fields. This research aims to refine Value-at-Risk (VaR) model accuracy by leveraging text mining and deep learning. It first uses NLP to analyze online news sentiments, integrating these as variables to boost stock market risk forecasts and assess their effect on VaR accuracy. Additionally, the study combines predictions from four unique Generalized AutoRegressive Conditional Heteroskedasticity (GARCH)-type models into advanced Long Short-Term Memory (LSTM) and Convolutional Neural Network (CNN)-LSTM models to see if this boosts VaR precision. It also explores how textual data impacts VaR predictions over short and longer periods, using 7 and 20-day rolling windows. The analysis, using S&P500 (SPY), Dow Jones Industrial Average (DJI), and Nasdaq Composite (IXIC) data from 2012 to 2023 alongside news headlines, tests these approaches. The results confirm that incorporating textual information into the VaR model enhances its forecasting accuracy, highlighting the benefits of applying deep learning techniques in this process.

Suggested Citation

  • Cao, Yangfan & Choo, Wei Chong & Matemilola, Bolaji Tunde, 2025. "Value-at-risk forecasting- based on textual information and a hybrid deep learning-based approach," International Review of Economics & Finance, Elsevier, vol. 103(C).
  • Handle: RePEc:eee:reveco:v:103:y:2025:i:c:s1059056025005660
    DOI: 10.1016/j.iref.2025.104403
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1059056025005660
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.iref.2025.104403?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reveco:v:103:y:2025:i:c:s1059056025005660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620165 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.