IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v52y2008i10p1167-1174.html
   My bibliography  Save this article

Development of a recycled polymer modified binder for use in stone mastic asphalt

Author

Listed:
  • Casey, Donnchadh
  • McNally, Ciaran
  • Gibney, Amanda
  • Gilchrist, Michael D.

Abstract

The number of commercial vehicles using Irish roads has increased considerably in recent years, leading to higher demands being placed on pavement materials and increased use of polymer modified bitumens. This has also coincided with significant changes in Governmental policy which has produced large increases in Irish recycling rates. Improved recycling levels are set to provide Ireland with a new challenge: to find potential uses for the large quantities of recycled polymer that are becoming available. Towards this end, the potential of developing a recycled polymer modified binder was investigated. The polymers most commonly recycled in Ireland were identified and sourced from industry. Fundamental bitumen tests were conducted to assess the effect of the recycled polymer and a mixing methodology developed. It was found that the addition of 4% recycled HDPE into a pen grade binder produced the most promising results, and the mixing process was then optimised with respect to mixing parameters and binder additives. A developmental recycled binder was produced and compared in performance tests to binders currently used in road construction practice. Results obtained from wheel track and fatigue tests show that although the binder does not deliver equivalent performance levels to a proprietary polymer modified binder, it does out-perform traditional binders used in stone mastic asphalt. Recommendations are offered on the further development of the recycled polymer modified binder to achieve the standards currently required.

Suggested Citation

  • Casey, Donnchadh & McNally, Ciaran & Gibney, Amanda & Gilchrist, Michael D., 2008. "Development of a recycled polymer modified binder for use in stone mastic asphalt," Resources, Conservation & Recycling, Elsevier, vol. 52(10), pages 1167-1174.
  • Handle: RePEc:eee:recore:v:52:y:2008:i:10:p:1167-1174
    DOI: 10.1016/j.resconrec.2008.06.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344908000840
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2008.06.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Yue & Bird, Roger N. & Heidrich, Oliver, 2007. "A review of the use of recycled solid waste materials in asphalt pavements," Resources, Conservation & Recycling, Elsevier, vol. 52(1), pages 58-73.
    2. Sokka, Laura & Antikainen, Riina & Kauppi, Pekka E., 2007. "Municipal solid waste production and composition in Finland—Changes in the period 1960–2002 and prospects until 2020," Resources, Conservation & Recycling, Elsevier, vol. 50(4), pages 475-488.
    3. Burnley, S.J. & Ellis, J.C. & Flowerdew, R. & Poll, A.J. & Prosser, H., 2007. "Assessing the composition of municipal solid waste in Wales," Resources, Conservation & Recycling, Elsevier, vol. 49(3), pages 264-283.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Omar R. Khaleel & Laila K. N. Al Gharbi & Moatasem M. Fayyadh, 2023. "Enhancing Bitumen Properties through the Utilization of Waste Polyethylene Terephthalate and Tyre Rubber," Sustainability, MDPI, vol. 15(12), pages 1-11, June.
    2. Poulikakos, L.D. & Papadaskalopoulou, C. & Hofko, B. & Gschösser, F. & Cannone Falchetto, A. & Bueno, M. & Arraigada, M. & Sousa, J. & Ruiz, R. & Petit, C. & Loizidou, M. & Partl, M.N., 2017. "Harvesting the unexplored potential of European waste materials for road construction," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 32-44.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Primož Jelušič & Süleyman Gücek & Bojan Žlender & Cahit Gürer & Rok Varga & Tamara Bračko & Murat V. Taciroğlu & Burak E. Korkmaz & Şule Yarcı & Borut Macuh, 2023. "Potential of Using Waste Materials in Flexible Pavement Structures Identified by Optimization Design Approach," Sustainability, MDPI, vol. 15(17), pages 1-19, August.
    2. Kylili, Angeliki & Ilic, Milos & Fokaides, Paris A., 2017. "Whole-building Life Cycle Assessment (LCA) of a passive house of the sub-tropical climatic zone," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 169-177.
    3. Sher Jahan Khan & Saeed Badghish & Puneet Kaur & Rajat Sharma & Amandeep Dhir, 2023. "What motivates the purchasing of green apparel products? A systematic review and future research agenda," Business Strategy and the Environment, Wiley Blackwell, vol. 32(7), pages 4183-4201, November.
    4. Feng Ma & Aimin Sha & Ruiyu Lin & Yue Huang & Chao Wang, 2016. "Greenhouse Gas Emissions from Asphalt Pavement Construction: A Case Study in China," IJERPH, MDPI, vol. 13(3), pages 1-15, March.
    5. Lin, Chitsan & Huang, Chun-Lan & Shern, Chien-Chuan, 2008. "Recycling waste tire powder for the recovery of oil spills," Resources, Conservation & Recycling, Elsevier, vol. 52(10), pages 1162-1166.
    6. Knoeri, Christof & Binder, Claudia R. & Althaus, Hans-Joerg, 2011. "Decisions on recycling: Construction stakeholders’ decisions regarding recycled mineral construction materials," Resources, Conservation & Recycling, Elsevier, vol. 55(11), pages 1039-1050.
    7. Skaf, Marta & Manso, Juan M. & Aragón, Ángel & Fuente-Alonso, José A. & Ortega-López, Vanesa, 2017. "EAF slag in asphalt mixes: A brief review of its possible re-use," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 176-185.
    8. Chilton, Tom & Burnley, Stephen & Nesaratnam, Suresh, 2010. "A life cycle assessment of the closed-loop recycling and thermal recovery of post-consumer PET," Resources, Conservation & Recycling, Elsevier, vol. 54(12), pages 1241-1249.
    9. Giovanni Gadaleta & Sabino De Gisi & Michele Notarnicola, 2021. "Feasibility Analysis on the Adoption of Decentralized Anaerobic Co-Digestion for the Treatment of Municipal Organic Waste with Energy Recovery in Urban Districts of Metropolitan Areas," IJERPH, MDPI, vol. 18(4), pages 1-17, February.
    10. Bryce, James & Brodie, Stefanie & Parry, Tony & Lo Presti, Davide, 2017. "A systematic assessment of road pavement sustainability through a review of rating tools," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 108-118.
    11. Maria Chiara Zanetti & Angela Farina, 2022. "Life Cycle Risk Assessment Applied to Gaseous Emissions from Crumb Rubber Asphalt Pavement Construction," Sustainability, MDPI, vol. 14(9), pages 1-12, May.
    12. Ogwueleka, Toochukwu Chibueze, 2013. "Survey of household waste composition and quantities in Abuja, Nigeria," Resources, Conservation & Recycling, Elsevier, vol. 77(C), pages 52-60.
    13. Firas Barraj & Sarah Mahfouz & Hussein Kassem & Jamal Khatib & Dimitrios Goulias & Adel Elkordi, 2023. "Investigation of Using Crushed Glass Waste as Filler Replacement in Hot Asphalt Mixtures," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    14. Marco Pasetto & Andrea Baliello & Giovanni Giacomello & Emiliano Pasquini, 2023. "The Use of Steel Slags in Asphalt Pavements: A State-of-the-Art Review," Sustainability, MDPI, vol. 15(11), pages 1-32, May.
    15. Farina, Angela & Zanetti, Maria Chiara & Santagata, Ezio & Blengini, Gian Andrea, 2017. "Life cycle assessment applied to bituminous mixtures containing recycled materials: Crumb rubber and reclaimed asphalt pavement," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 204-212.
    16. Luorui Zheng & Yingzhen Li & Cheng Qian & Yanjun Du, 2023. "Carbon Emission Evaluation of Roadway Construction at Contaminated Sites Based on Life Cycle Assessment Method," Sustainability, MDPI, vol. 15(16), pages 1-14, August.
    17. Cansu İskender & Erol İskender & Atakan Aksoy & Celaleddin Ensar Şengül, 2021. "Effect of Glass Cullet Size and Hydrated Lime—Nanoclay Additives on the Mechanical Properties of Glassphalt Concrete," Sustainability, MDPI, vol. 13(23), pages 1-17, November.
    18. Güngör KARAKAŞ, 2022. "Factors affecting food waste awareness in Turkey. The case of Corum province," Eastern Journal of European Studies, Centre for European Studies, Alexandru Ioan Cuza University, vol. 13, pages 271-289, June.
    19. Yunpeng Zhao & Dimitrios Goulias & Magdalena Dobiszewska & Paweł Modrzyński, 2022. "Life-Cycle Sustainability Assessment of Using Rock Dust as a Partial Replacement of Fine Aggregate and Cement in Concrete Pavements," Sustainability, MDPI, vol. 14(19), pages 1-17, September.
    20. Inna Tryhuba & Anatoliy Tryhuba & Taras Hutsol & Vasyl Lopushniak & Agata Cieszewska & Oleh Andrushkiv & Wiesław Barabasz & Anna Pikulicka & Zbigniew Kowalczyk & Vyacheslav Vasyuk, 2024. "European Green Deal: Justification of the Relationships between the Functional Indicators of Bioenergy Production Systems Using Organic Residential Waste Based on the Analysis of the State of Theory a," Energies, MDPI, vol. 17(6), pages 1-25, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:52:y:2008:i:10:p:1167-1174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.