IDEAS home Printed from https://ideas.repec.org/a/eee/mateco/v16y1987i2p139-146.html
   My bibliography  Save this article

Continuous representation of a preference relation on a connected topological space

Author

Listed:
  • Chateauneuf, Alain

Abstract

No abstract is available for this item.

Suggested Citation

  • Chateauneuf, Alain, 1987. "Continuous representation of a preference relation on a connected topological space," Journal of Mathematical Economics, Elsevier, vol. 16(2), pages 139-146, April.
  • Handle: RePEc:eee:mateco:v:16:y:1987:i:2:p:139-146
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0304-4068(87)90003-6
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nermuth, Manfred, 1978. "Sensitivity of optimal growth paths : With respect to a change in target stocks or in the length of the planning horizon in a multisector model," Journal of Mathematical Economics, Elsevier, vol. 5(3), pages 289-301, December.
    2. David Cass, 1964. "Optimum Economic Growth in an Aggregative Model of Capital Accumulation: A Turnpike Theorem," Cowles Foundation Discussion Papers 178, Cowles Foundation for Research in Economics, Yale University.
    3. Easley, David & Spulber, Daniel F, 1981. "Stochastic Equilibrium and Optimality with Rolling Plans," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 22(1), pages 79-103, February.
    4. Hajime Hori, 1982. "Stability of the Neumann Ray in a Dynamic Leontief System with Finite Forecast Horizons," Review of Economic Studies, Oxford University Press, vol. 49(3), pages 461-472.
    5. Polterovich, V M, 1983. "Equilibrium Trajectories of Economic Growth," Econometrica, Econometric Society, vol. 51(3), pages 693-729, May.
    6. Mikhail Kaganovich, 1985. "Efficiency of Sliding Plans in a Linear Model with Time-Dependent Technology," Review of Economic Studies, Oxford University Press, vol. 52(4), pages 691-702.
    7. J. Tsukui, 1967. "The Consumption and the Output Turnpike Theorems in a von Neumann Type of Model—A Finite Term Problem," Review of Economic Studies, Oxford University Press, vol. 34(1), pages 85-93.
    8. S. M. Goldman, 1968. "Optimal Growth and Continual Planning Revision," Review of Economic Studies, Oxford University Press, vol. 35(2), pages 145-154.
    9. Alexandre Scheinkman, Jose, 1976. "On optimal steady states of n-sector growth models when utility is discounted," Journal of Economic Theory, Elsevier, vol. 12(1), pages 11-30, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peris J. E. & Subiza, B., 1996. "Demand correspondence for pseudotransitive preferences," Mathematical Social Sciences, Elsevier, vol. 31(1), pages 61-61, February.
    2. Gilboa, Itzhak & Lapson, Robert, 1995. "Aggregation of Semiorders: Intransitive Indifference Makes a Difference," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), pages 109-126.
    3. Marc-Arthur Diaye & Michal Wong-Urdanivia, 2005. "A simple test of Richter-rationality," Cahiers de la Maison des Sciences Economiques b06008, Université Panthéon-Sorbonne (Paris 1).
    4. Knoblauch, Vicki, 2000. "Lexicographic orders and preference representation," Journal of Mathematical Economics, Elsevier, vol. 34(2), pages 255-267, October.
    5. Karni, Edi, 2011. "Continuity, completeness and the definition of weak preferences," Mathematical Social Sciences, Elsevier, vol. 62(2), pages 123-125, September.
    6. Gianni Bosi, 2002. "Semicontinuous Representability of Homothetic Interval Orders by Means of Two Homogeneous Functionals," Theory and Decision, Springer, vol. 52(4), pages 303-312, June.
    7. Marc-Arthur Diaye & Michal Wong-Urdanivia, 2006. "A Simple Test of Richter-Rationality," Documents de recherche 06-01, Centre d'Études des Politiques Économiques (EPEE), Université d'Evry Val d'Essonne.
    8. Bosi, Gianni & Isler, Romano, 1995. "Representing preferences with nontransitive indifference by a single real-valued function," Journal of Mathematical Economics, Elsevier, vol. 24(7), pages 621-631.
    9. Begoña Subiza Martínez, 1993. "Numerical Representation Of Acyclic Preferences," Working Papers. Serie AD 1993-09, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    10. Vicki Knoblauch, 2009. "Topologies Defined by Binary Relations," Working papers 2009-28, University of Connecticut, Department of Economics, revised Dec 2009.
    11. Bosi, Gianni & Zuanon, Magalì, 2014. "Upper semicontinuous representations of interval orders," Mathematical Social Sciences, Elsevier, vol. 68(C), pages 60-63.
    12. Marc Le Menestrel & Bertrand Lemaire, 2004. "Biased quantitative measurement of interval ordered homothetic preferences," Economics Working Papers 789, Department of Economics and Business, Universitat Pompeu Fabra.
    13. Estévez Toranzo, Margarita & García Cutrín, Javier & Hervés Beloso,Carlos & López López, Miguel A., 1993. "A note on representation of references," UC3M Working papers. Economics 2905, Universidad Carlos III de Madrid. Departamento de Economía.
    14. Peris, Josep E. & Subiza, Begona, 1995. "A weak utility function for acyclic preferences," Economics Letters, Elsevier, vol. 48(1), pages 21-24, April.
    15. Knoblauch, Vicki, 1998. "Order isomorphisms for preferences with intransitive indifference," Journal of Mathematical Economics, Elsevier, vol. 30(4), pages 421-431, November.
    16. Toranzo, Margarita Estevez & Garcia-Cutrin, Javier & Lopez Lopez, Miguel A., 1995. "A note on the representation of preferences," Mathematical Social Sciences, Elsevier, vol. 29(3), pages 255-262, June.
    17. Estévez Toranzo, Margarita & Hervés Beloso, Carlos & López López, Miguel A., 1993. "Una nota sobre la representación numérica de relaciones de preferencia," DES - Documentos de Trabajo. Estadística y Econometría. DS 2941, Universidad Carlos III de Madrid. Departamento de Estadística.
    18. Rajeev Kohli & Kamel Jedidi, 2007. "Representation and Inference of Lexicographic Preference Models and Their Variants," Marketing Science, INFORMS, vol. 26(3), pages 380-399, 05-06.
    19. Begoña Subiza Martínez & Carmen Herrero Blanco, 1991. "A characterization of acyclic preferences on countable sets," Working Papers. Serie AD 1991-01, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    20. Bosi, Gianni & Caterino, Alessandro & Ceppitelli, Rita, 2009. "Existence of continuous utility functions for arbitrary binary relations: some sufficient conditions," MPRA Paper 14808, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:16:y:1987:i:2:p:139-146. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jmateco .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.