IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v126y2025ics0966692325001085.html
   My bibliography  Save this article

A neuro-fuzzy and deep learning framework for accurate public transport demand forecasting: Leveraging spatial and temporal factors

Author

Listed:
  • Radfar, Shariat
  • Koosha, Hamidreza
  • Gholami, Ali
  • Amindoust, Atefeh

Abstract

Efficient public transportation requires innovative planning and operational strategies. Accurate demand forecasting is crucial, as it is influenced by complex, non-linear interactions of various spatial and temporal factors. This study proposes a neuro-fuzzy inference and deep learning models to predict public transport demand in Mashhad's traffic zones for enhanced operational planning. The model's flexibility allows the integration of diverse temporal and spatial variables. Four Adaptive Neuro-Fuzzy Inference Systems (ANFIS) and Long Short-Term Memory (LSTM) models developed with two datasets were evaluated and compared to each other. Datasets one and two contained all possible variables without pre-judging their impact, encompassing daily and yearly horizons, respectively. Datasets three and four employed the identified influential variables from previous datasets using the Random Forest algorithm, leading to faster processing and reduced error. Five statistical coefficients including MSE (Mean Squared Error), BIAS, R2 (Coefficient of Determination), WI (Willmott Index) and NSE (Nash-Sutcliffe Efficiency were presented to evaluate the performance of the proposed models. The results showed that the LSTM neural network model in the short-term daily scale (MSE = 0.0006, BIAS = 0.9308, R2 = 0.9047, WI = 0.7591, NSE = 0.9047) and the ANFIS model in the long-term annual scale (MSE = 0.0024, BIAS = 0.0229, R2 = 0.9415, WI = 0.9730, NSE = 0.8738) achieved superior performance in predicting demand for bus and rail systems in Mashhad. This research's forecasting models enable planners to estimate public transport demand under varying utilization levels of urban uses in Mashhad, offering insights for both daily and annual horizons across different traffic zones.

Suggested Citation

  • Radfar, Shariat & Koosha, Hamidreza & Gholami, Ali & Amindoust, Atefeh, 2025. "A neuro-fuzzy and deep learning framework for accurate public transport demand forecasting: Leveraging spatial and temporal factors," Journal of Transport Geography, Elsevier, vol. 126(C).
  • Handle: RePEc:eee:jotrge:v:126:y:2025:i:c:s0966692325001085
    DOI: 10.1016/j.jtrangeo.2025.104217
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692325001085
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2025.104217?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sohani Liyanage & Hussein Dia, 2020. "An Agent-Based Simulation Approach for Evaluating the Performance of On-Demand Bus Services," Sustainability, MDPI, vol. 12(10), pages 1-20, May.
    2. Bobin Wang & Chunfu Shao & Xun Ji, 2017. "Influencing Mechanism Analysis of Holiday Activity–Travel Patterns on Transportation Energy Consumption and Emissions in China," Energies, MDPI, vol. 10(7), pages 1-20, July.
    3. Stefan Gössling & Christoph Neger & Robert Steiger & Rainer Bell, 2023. "Weather, climate change, and transport: a review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1341-1360, September.
    4. Fenling Feng & Zhaohui Zou & Chengguang Liu & Qianran Zhou & Chang Liu, 2023. "Forecast of Short-Term Passenger Flow in Multi-Level Rail Transit Network Based on a Multi-Task Learning Model," Sustainability, MDPI, vol. 15(4), pages 1-17, February.
    5. Arnab Mitra & Arnav Jain & Avinash Kishore & Pravin Kumar, 2022. "A Comparative Study of Demand Forecasting Models for a Multi-Channel Retail Company: A Novel Hybrid Machine Learning Approach," SN Operations Research Forum, Springer, vol. 3(4), pages 1-22, December.
    6. Xiao, Yi & Liu, John J. & Hu, Yi & Wang, Yingfeng & Lai, Kin Keung & Wang, Shouyang, 2014. "A neuro-fuzzy combination model based on singular spectrum analysis for air transport demand forecasting," Journal of Air Transport Management, Elsevier, vol. 39(C), pages 1-11.
    7. Wang, Yihong & Correia, Gonçalo Homem de Almeida & de Romph, Erik & Timmermans, H.J.P., 2017. "Using metro smart card data to model location choice of after-work activities: An application to Shanghai," Journal of Transport Geography, Elsevier, vol. 63(C), pages 40-47.
    8. Zhou, Yang & Thill, Jean-Claude & Xu, Yang & Fang, Zhixiang, 2021. "Variability in individual home-work activity patterns," Journal of Transport Geography, Elsevier, vol. 90(C).
    9. Liu, Xintao & Wu, Jiawei & Huang, Jianwei & Zhang, Junwei & Chen, Bi Yu & Chen, Anthony, 2021. "Spatial-interaction network analysis of built environmental influence on daily public transport demand," Journal of Transport Geography, Elsevier, vol. 92(C).
    10. Oded Cats, 2024. "Identifying human mobility patterns using smart card data," Transport Reviews, Taylor & Francis Journals, vol. 44(1), pages 213-243, January.
    11. Mi-Kyeong Kim & Sangpil Kim & Hong-Gyoo Sohn, 2018. "Relationship between Spatio-Temporal Travel Patterns Derived from Smart-Card Data and Local Environmental Characteristics of Seoul, Korea," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
    12. Hassanniakalager, Arman & Sermpinis, Georgios & Stasinakis, Charalampos & Verousis, Thanos, 2020. "A conditional fuzzy inference approach in forecasting," European Journal of Operational Research, Elsevier, vol. 283(1), pages 196-216.
    13. Ilaria Henke & Armando Cartenì & Clorinda Molitierno & Assunta Errico, 2020. "Decision-Making in the Transport Sector: A Sustainable Evaluation Method for Road Infrastructure," Sustainability, MDPI, vol. 12(3), pages 1-19, January.
    14. Yang Zhou & Caiyun Qian & Han Xiao & Jiachen Xin & Zixiong Wei & Qing Feng, 2019. "Coupling Research on Land Use and Travel Behaviors Along the Tram Based on Accessibility Measurement—Taking Nanjing Chilin Tram Line 1 as an Example," Sustainability, MDPI, vol. 11(7), pages 1-33, April.
    15. Patrick Bonnel, 2021. "Benefits of Cellular Telecommunication and Smart Card Data for Travel Behaviour Analysis," International Transport Forum Discussion Papers 2021/06, OECD Publishing.
    16. Behrang Assemi & Azalden Alsger & Mahboobeh Moghaddam & Mark Hickman & Mahmoud Mesbah, 2020. "Improving alighting stop inference accuracy in the trip chaining method using neural networks," Public Transport, Springer, vol. 12(1), pages 89-121, March.
    17. Sohani Liyanage & Hussein Dia & Rusul Abduljabbar & Saeed Asadi Bagloee, 2019. "Flexible Mobility On-Demand: An Environmental Scan," Sustainability, MDPI, vol. 11(5), pages 1-39, February.
    18. Wusheng Liu & Qian Tan & Wei Wu, 2020. "Forecast and Early Warning of Regional Bus Passenger Flow Based on Machine Learning," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Shiliang & Zhao, Chong & Zhou, Hao & Li, Bozhao & Kang, Mengjun, 2022. "Unraveling the relative contribution of TOD structural factors to metro ridership: A novel localized modeling approach with implications on spatial planning," Journal of Transport Geography, Elsevier, vol. 100(C).
    2. Phattarasuda Witchayaphong & Surachet Pravinvongvuth & Kunnawee Kanitpong & Kazushi Sano & Suksun Horpibulsuk, 2020. "Influential Factors Affecting Travelers’ Mode Choice Behavior on Mass Transit in Bangkok, Thailand," Sustainability, MDPI, vol. 12(22), pages 1-18, November.
    3. Xiaoquan Wang & Chunfu Shao & Chaoying Yin & Chengxiang Zhuge & Wenjun Li, 2018. "Application of Bayesian Multilevel Models Using Small and Medium Size City in China: The Case of Changchun," Sustainability, MDPI, vol. 10(2), pages 1-15, February.
    4. Xiaoxu, Xing & Qiangmin, Xi & Weihao, Shi, 2024. "Impact of urban compactness on carbon emission in Chinese cities: From moderating effects of industrial diversity and job-housing imbalances," Land Use Policy, Elsevier, vol. 143(C).
    5. Zhang, Yuan & Chen, Xiao-Jian & Gao, Song & Gong, Yongxi & Liu, Yu, 2024. "Integrating smart card records and dockless bike-sharing data to understand the effect of the built environment on cycling as a feeder mode for metro trips," Journal of Transport Geography, Elsevier, vol. 121(C).
    6. Lee, Hasik & Park, Ho-Chul & Kho, Seung-Young & Kim, Dong-Kyu, 2019. "Assessing transit competitiveness in Seoul considering actual transit travel times based on smart card data," Journal of Transport Geography, Elsevier, vol. 80(C).
    7. Duan, Zhengyu & Zhao, Haoran & Li, Zhenming, 2023. "Non-linear effects of built environment and socio-demographics on activity space," Journal of Transport Geography, Elsevier, vol. 111(C).
    8. Chang, Shixin & Gao, Liang & Zhang, Chaoyang & Yu, Ting & Han, Xiao & Si, Bingfeng & Mendes, Jose F.F., 2025. "Unraveling metro mobility patterns in China: A multi-city comparative study using travel motifs and entropy analysis," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
    9. Christian Martin Mützel & Joachim Scheiner, 2022. "Investigating spatio-temporal mobility patterns and changes in metro usage under the impact of COVID-19 using Taipei Metro smart card data," Public Transport, Springer, vol. 14(2), pages 343-366, June.
    10. Lei, Da & Cheng, Long & Wang, Pengfei & Chen, Xuewu & Zhang, Lin, 2024. "Identifying service bottlenecks in public bikesharing flow networks," Journal of Transport Geography, Elsevier, vol. 116(C).
    11. Karol Tucki & Małgorzata Krzywonos & Olga Orynycz & Adam Kupczyk & Anna Bączyk & Izabela Wielewska, 2021. "Analysis of the Possibility of Fulfilling the Paris Agreement by the Visegrad Group Countries," Sustainability, MDPI, vol. 13(16), pages 1-21, August.
    12. Nayak, Suchismita & Pandit, Debapratim, 2025. "Daily activity-travel pattern identification using natural language processing and semantic matching," Journal of Transport Geography, Elsevier, vol. 122(C).
    13. Naragain Phumchusri & Nichakan Phupaichitkun, 2024. "Sales prediction hybrid models for retails using promotional pricing strategy as a key demand driver," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 23(5), pages 461-480, October.
    14. Chen, Enhui & Stathopoulos, Amanda & Nie, Yu (Marco), 2022. "Transfer station choice in a multimodal transit system: An empirical study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 337-355.
    15. Mariano Gallo & Mario Marinelli, 2020. "Sustainable Mobility: A Review of Possible Actions and Policies," Sustainability, MDPI, vol. 12(18), pages 1-39, September.
    16. Xuesong Feng & Zhibin Tao & Xuejun Niu & Zejing Ruan, 2021. "Multi-Objective Land Use Allocation Optimization in View of Overlapped Influences of Rail Transit Stations," Sustainability, MDPI, vol. 13(23), pages 1-14, November.
    17. Kaloop, Mosbeh R. & Bardhan, Abidhan & Kardani, Navid & Samui, Pijush & Hu, Jong Wan & Ramzy, Ahmed, 2021. "Novel application of adaptive swarm intelligence techniques coupled with adaptive network-based fuzzy inference system in predicting photovoltaic power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    18. Sybille Bauriedl & Anke Strüver, 2020. "Platform Urbanism: Technocapitalist Production of Private and Public Spaces," Urban Planning, Cogitatio Press, vol. 5(4), pages 267-276.
    19. Limor Dina Gonen & Tchai Tavor & Uriel Spiegel, 2024. "Unlocking Market Potential: Strategic Consumer Segmentation and Dynamic Pricing for Balancing Loyalty and Deal Seeking," Mathematics, MDPI, vol. 12(21), pages 1-31, October.
    20. Batara Surya & Hamsina Hamsina & Ridwan Ridwan & Baharuddin Baharuddin & Firman Menne & Andi Tenri Fitriyah & Emil Salim Rasyidi, 2020. "The Complexity of Space Utilization and Environmental Pollution Control in the Main Corridor of Makassar City, South Sulawesi, Indonesia," Sustainability, MDPI, vol. 12(21), pages 1-41, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:126:y:2025:i:c:s0966692325001085. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.