IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v126y2025ics0966692325001073.html
   My bibliography  Save this article

Prediction of high-risk areas using the interpretable machine learning: Based on each determinant for the severity of pedestrian crashes

Author

Listed:
  • Yoon, Junho

Abstract

Despite the steady decline in the total number of pedestrian crashes in Korea, the pedestrian fatality rate per 100,000 people remains high compared to the Organization for Economic Cooperation and Development (OECD) average. As the data of traffic crashes is gradually accumulated every year, various machine learning methodologies are needed to analyze this data. This study proposed a new algorithmic approach using Local Interpretable Model-Agnostic Explanation (LIME) to identify vulnerable pedestrian crash areas based on each determinant influencing these severity in Seoul. Using the pedestrian crash data from 2016 to 2018, this study uses the XGBoost to model the determinants of pedestrian crash severity and LIME to predict high-risk areas for each determinant. A new algorithmic approach using LIME was proposed to enhance the reliability by filtering data based on an Explanation Fit (R2 ≥ 0.26), in reference to Cohen (1988). Upon synthesizing the results, Cheongnyangni Station and Gangnam Station in Seoul were predicted as vulnerable to severe pedestrian crashes due to the superposition of influencing variables considered in this study. In this study, the heatmap predictions derived from the proposed algorithm methodology provided insights into the vulnerable areas and non-linear determinants of pedestrian crash severity. Additionally, this study suggests policy implications aimed at reducing pedestrian crash severity and enhancing pedestrian safety.

Suggested Citation

  • Yoon, Junho, 2025. "Prediction of high-risk areas using the interpretable machine learning: Based on each determinant for the severity of pedestrian crashes," Journal of Transport Geography, Elsevier, vol. 126(C).
  • Handle: RePEc:eee:jotrge:v:126:y:2025:i:c:s0966692325001073
    DOI: 10.1016/j.jtrangeo.2025.104216
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692325001073
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2025.104216?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:126:y:2025:i:c:s0966692325001073. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.