IDEAS home Printed from https://ideas.repec.org/a/eee/jocoma/v39y2025ics2405851325000455.html
   My bibliography  Save this article

Smoothing quantile regression averaging: A new approach to probabilistic forecasting of electricity prices

Author

Listed:
  • Uniejewski, Bartosz

Abstract

Accurate short-term price forecasting is essential for daily operations in electricity markets. This article introduces a new method, called Smoothing Quantile Regression (SQR) Averaging, that improves upon well-performing probabilistic forecasting schemes. To demonstrate its utility, a comprehensive study is conducted on two electricity markets, including recent data covering the COVID-19 pandemic and the Russian invasion of Ukraine. The performance of SQR Averaging is evaluated both in terms of reliability and sharpness measures, and economic benefits from a trading strategy. The latter utilizes battery storage and sets limit orders using selected quantiles of the predictive distribution. SQR Averaging leads to profit increases compared to the benchmark strategy based solely on point forecasts. This is strong evidence for the practical value of using probabilistic forecasts in day-ahead power trading, even in the face of the COVID-19 pandemic and geopolitical disruptions.

Suggested Citation

  • Uniejewski, Bartosz, 2025. "Smoothing quantile regression averaging: A new approach to probabilistic forecasting of electricity prices," Journal of Commodity Markets, Elsevier, vol. 39(C).
  • Handle: RePEc:eee:jocoma:v:39:y:2025:i:c:s2405851325000455
    DOI: 10.1016/j.jcomm.2025.100501
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2405851325000455
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jcomm.2025.100501?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jocoma:v:39:y:2025:i:c:s2405851325000455. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jcomm .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.