IDEAS home Printed from
   My bibliography  Save this article

Limit distributions of least squares estimators in linear regression models with vague concepts


  • Krätschmer, Volker


Linear regression models with vague concepts extend the classical single equation linear regression models by admitting observations in form of fuzzy subsets instead of real numbers. They have lately been introduced (cf. [V. Krätschmer, Induktive Statistik auf Basis unscharfer Meßkonzepte am Beispiel linearer Regressionsmodelle, unpublished postdoctoral thesis, Faculty of Law and Economics of the University of Saarland, Saarbrücken, 2001; V. Krätschmer, Least squares estimation in linear regression models with vague concepts, Fuzzy Sets and Systems, accepted for publication]) to improve the empirical meaningfulness of the relationships between the involved items by a more sensitive attention to the problems of data measurement, in particular, the fundamental problem of adequacy. The parameters of such models are still real numbers, and a method of estimation can be applied which extends directly the ordinary least squares method. In another recent contribution (cf. [V. Krätschmer, Strong consistency of least squares estimation in linear regression models with vague concepts, J. Multivar. Anal., accepted for publication]) strong consistency and -consistency of this generalized least squares estimation have been shown. The aim of the paper is to complete these results by an investigation of the limit distributions of the estimators. It turns out that the classical results can be transferred, in some cases even asymptotic normality holds.

Suggested Citation

  • Krätschmer, Volker, 2006. "Limit distributions of least squares estimators in linear regression models with vague concepts," Journal of Multivariate Analysis, Elsevier, vol. 97(5), pages 1044-1069, May.
  • Handle: RePEc:eee:jmvana:v:97:y:2006:i:5:p:1044-1069

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Ferger, Dietmar, 1999. "On the uniqueness of maximizers of Markov-Gaussian processes," Statistics & Probability Letters, Elsevier, vol. 45(1), pages 71-77, October.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Coppi, Renato & Gil, Maria A. & Kiers, Henk A.L., 2006. "The fuzzy approach to statistical analysis," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 1-14, November.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:97:y:2006:i:5:p:1044-1069. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.