IDEAS home Printed from
   My bibliography  Save this article

Two-sample inference for normal mean vectors based on monotone missing data


  • Yu, Jianqi
  • Krishnamoorthy, K.
  • Pannala, Maruthy K.


Inferential procedures for the difference between two multivariate normal mean vectors based on incomplete data matrices with different monotone patterns are developed. Assuming that the population covariance matrices are equal, a pivotal quantity, similar to the Hotelling T2 statistic, is proposed, and its approximate distribution is derived. Hypothesis testing and confidence estimation of the difference between the mean vectors based on the approximate distribution are outlined. The validity of the approximation is investigated using Monte Carlo simulation. Monte Carlo studies indicate that the approximate method is very satisfactory even for small samples. A multiple comparison procedure is outlined and the proposed methods are illustrated using an example.

Suggested Citation

  • Yu, Jianqi & Krishnamoorthy, K. & Pannala, Maruthy K., 2006. "Two-sample inference for normal mean vectors based on monotone missing data," Journal of Multivariate Analysis, Elsevier, vol. 97(10), pages 2162-2176, November.
  • Handle: RePEc:eee:jmvana:v:97:y:2006:i:10:p:2162-2176

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. K. Krishnamoorthy & Maruthy Pannala, 1998. "Some Simple Test Procedures for Normal Mean Vector with Incomplete Data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 50(3), pages 531-542, September.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Shutoh, Nobumichi & Hyodo, Masashi & Seo, Takashi, 2011. "An asymptotic approximation for EPMC in linear discriminant analysis based on two-step monotone missing samples," Journal of Multivariate Analysis, Elsevier, vol. 102(2), pages 252-263, February.
    2. Krishnamoorthy, K., 2013. "Comparison of confidence intervals for correlation coefficients based on incomplete monotone samples and those based on listwise deletion," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 378-388.
    3. Krishnamoorthy, K. & Yu, Jianqi, 2012. "Multivariate Behrens–Fisher problem with missing data," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 141-150.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:97:y:2006:i:10:p:2162-2176. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.