IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v8y1978i3p468-478.html
   My bibliography  Save this article

Inference in canonical correlation analysis

Author

Listed:
  • Glynn, William J.
  • Muirhead, Robb J.

Abstract

The asymptotic behavior, for large sample size, is given for the distribution of the canonical correlation coefficients. The result is used to examine the Bartlett-Lawley test that the residual population canonical correlation coefficients are zero. A marginal likelihood function for the population coefficients is obtained and the maximum marginal likelihood estimates are shown to provide a bias correction.

Suggested Citation

  • Glynn, William J. & Muirhead, Robb J., 1978. "Inference in canonical correlation analysis," Journal of Multivariate Analysis, Elsevier, vol. 8(3), pages 468-478, September.
  • Handle: RePEc:eee:jmvana:v:8:y:1978:i:3:p:468-478
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0047-259X(78)90067-2
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nkiet, Guy Martial, 2005. "On estimation of the dimensionality in linear canonical analysis," Statistics & Probability Letters, Elsevier, vol. 75(2), pages 103-112, November.
    2. Gunderson, Brenda K. & Muirhead, Robb J., 1997. "On Estimating the Dimensionality in Canonical Correlation Analysis," Journal of Multivariate Analysis, Elsevier, vol. 62(1), pages 121-136, July.
    3. Gonzalo Camba-Mendez & George Kapetanios, 2005. "Statistical Tests of the Rank of a Matrix and Their Applications in Econometric Modelling," Working Papers 541, Queen Mary University of London, School of Economics and Finance.
    4. Butler, Ronald W. & Wood, Andrew T.A., 2005. "Laplace approximations to hypergeometric functions of two matrix arguments," Journal of Multivariate Analysis, Elsevier, vol. 94(1), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:8:y:1978:i:3:p:468-478. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.