IDEAS home Printed from
   My bibliography  Save this article

On Sequential Fixed-Size Confidence Regions for the Mean Vector


  • Datta, S.
  • Mukhopadhyay, N.


In order to construct a fixed-size confidence region for the mean vector of an unknown distribution functionF, a new purely sequential sampling strategy is proposed first. For this new procedure, under some regularity conditions onF, the coverage probability is shown (Theorem 2.1) to be at least (1-[alpha])-B[alpha]2d2+o(d2) asd-->0, where (1-[alpha]) is the preassigned level of confidence,Bis an appropriate functional ofF, and 2dis the preassigned diameter of the proposed spherical confidence region for the mean vector ofF. An accelerated version of the stopping rule is also provided with the analogous second-order characteristics (Theorem 3.1). In the special case of ap-dimensional normal random variable, analogous purely sequential and accelerated sequential procedures as well as a three-stage procedure are briefly introduced together with their asymptotic second-order characteristics.

Suggested Citation

  • Datta, S. & Mukhopadhyay, N., 1997. "On Sequential Fixed-Size Confidence Regions for the Mean Vector," Journal of Multivariate Analysis, Elsevier, vol. 60(2), pages 233-251, February.
  • Handle: RePEc:eee:jmvana:v:60:y:1997:i:2:p:233-251

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Mukhopadhyay, N., 1999. "Second-Order Properties of a Two-Stage Fixed-Size Confidence Region for the Mean Vector of a Multivariate Normal Distribution," Journal of Multivariate Analysis, Elsevier, vol. 68(2), pages 250-263, February.
    2. Xu, Jin & Gupta, Arjun K., 2006. "Improved confidence regions for a mean vector under general conditions," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1051-1062, November.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:60:y:1997:i:2:p:233-251. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.