IDEAS home Printed from
   My bibliography  Save this article

On the Studentisation of Random Vectors


  • Vu, H. T. V.
  • Maller, R. A.
  • Klass, M. J.


We give general matrix Studentisation results for random vectors converging in distribution to a spherically symmetric random vector, which have wide applicability to the asymptotic properties of estimators obtained from estimating equations, for example. Appropriate matrix "square roots," required for normalisation of the random vectors, are shown to be the Cholesky square root and the symmetric positive definite square root.

Suggested Citation

  • Vu, H. T. V. & Maller, R. A. & Klass, M. J., 1996. "On the Studentisation of Random Vectors," Journal of Multivariate Analysis, Elsevier, vol. 57(1), pages 142-155, April.
  • Handle: RePEc:eee:jmvana:v:57:y:1996:i:1:p:142-155

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Martsynyuk, Yuliya V., 2013. "On the generalized domain of attraction of the multivariate normal law and asymptotic normality of the multivariate Student t-statistic," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 402-411.
    2. Kesten, Harry & Maller, R. A., 1997. "Random Deletion Does Not Affect Asymptotic Normality or Quadratic Negligibility," Journal of Multivariate Analysis, Elsevier, vol. 63(1), pages 136-179, October.
    3. H. Vu & R. Maller & X. Zhou, 1998. "Asymptotic Properties of a Class of Mixture Models for Failure Data: The Interior and Boundary Cases," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 50(4), pages 627-653, December.
    4. Csörgő, Miklós & Martsynyuk, Yuliya V., 2011. "Functional central limit theorems for self-normalized least squares processes in regression with possibly infinite variance data," Stochastic Processes and their Applications, Elsevier, vol. 121(12), pages 2925-2953.
    5. Martsynyuk, Yuliya V., 2012. "Invariance principles for a multivariate Student process in the generalized domain of attraction of the multivariate normal law," Statistics & Probability Letters, Elsevier, vol. 82(12), pages 2270-2277.
    6. Maller, Ross A. & Mason, David M., 2015. "Matrix normalized convergence of a Lévy process to normality at zero," Stochastic Processes and their Applications, Elsevier, vol. 125(6), pages 2353-2382.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:57:y:1996:i:1:p:142-155. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.