IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v208y2025ics0047259x25000284.html
   My bibliography  Save this article

Maximum spacing estimation for multivariate observations under a general class of information-type measures

Author

Listed:
  • Kuljus, Kristi
  • Bao, Han
  • Ranneby, Bo

Abstract

This article considers the maximum spacing (MSP) method for multivariate observations, nearest neighbour balls are used as a multidimensional analogue to univariate spacings. Compared to the previous studies, a broader class of MSP estimators corresponding to different information-type measures is studied. The studied class of estimators includes also the estimator corresponding to the Kullback–Leibler information measure obtained with the logarithmic function. Consistency of the MSP estimators is proved when the assigned model class is correct, that is the true density belongs to the assigned class. The behaviour of the MSP estimator under different divergence measures is studied and the advantage of using MSP estimators corresponding to different information measures in the context of model validation is illustrated in simulation examples.

Suggested Citation

  • Kuljus, Kristi & Bao, Han & Ranneby, Bo, 2025. "Maximum spacing estimation for multivariate observations under a general class of information-type measures," Journal of Multivariate Analysis, Elsevier, vol. 208(C).
  • Handle: RePEc:eee:jmvana:v:208:y:2025:i:c:s0047259x25000284
    DOI: 10.1016/j.jmva.2025.105433
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X25000284
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2025.105433?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:208:y:2025:i:c:s0047259x25000284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.