IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v206y2025ics0047259x24001027.html
   My bibliography  Save this article

Alteration detection of tensor dependence structure via sparsity-exploited reranking algorithm

Author

Listed:
  • Ma, Li
  • Qin, Shenghao
  • Xia, Yin

Abstract

Tensor-valued data arise frequently from a wide variety of scientific applications, and many among them can be translated into an alteration detection problem of tensor dependence structures. In this article, we formulate the problem under the popularly adopted tensor-normal distributions and aim at two-sample correlation/partial correlation comparisons of tensor-valued observations. Through decorrelation and centralization, a separable covariance structure is employed to pool sample information from different tensor modes to enhance the power of the test. Additionally, we propose a novel Sparsity-Exploited Reranking Algorithm (SERA) to further improve the multiple testing efficiency. Such efficiency gain is achieved by incorporating a carefully constructed auxiliary tensor sequence to rerank the p-values. Besides the tensor framework, SERA is also generally applicable to a wide range of two-sample large-scale inference problems with sparsity structures, and is of independent interest. The asymptotic properties of the proposed test are derived and the algorithm is shown to control the false discovery at the pre-specified level. We demonstrate the efficacy of the proposed method through intensive simulations and two scientific applications.

Suggested Citation

  • Ma, Li & Qin, Shenghao & Xia, Yin, 2025. "Alteration detection of tensor dependence structure via sparsity-exploited reranking algorithm," Journal of Multivariate Analysis, Elsevier, vol. 206(C).
  • Handle: RePEc:eee:jmvana:v:206:y:2025:i:c:s0047259x24001027
    DOI: 10.1016/j.jmva.2024.105395
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X24001027
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2024.105395?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. T. Tony Cai & Wenguang Sun & Yin Xia, 2022. "LAWS: A Locally Adaptive Weighting and Screening Approach to Spatial Multiple Testing," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(539), pages 1370-1383, September.
    2. Yin Xia & Tianxi Cai & T. Tony Cai, 2015. "Testing differential networks with applications to the detection of gene-gene interactions," Biometrika, Biometrika Trust, vol. 102(2), pages 247-266.
    3. T. Tony Cai & Wenguang Sun & Weinan Wang, 2019. "Covariate‐assisted ranking and screening for large‐scale two‐sample inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 187-234, April.
    4. Himadri Rajput & Rahil Changotra & Prachi Rajput & Sneha Gautam & Anjani R. K. Gollakota & Amarpreet Singh Arora, 2021. "A shock like no other: coronavirus rattles commodity markets," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 6564-6575, May.
    5. Chen, Songxi, 2012. "Two Sample Tests for High Dimensional Covariance Matrices," MPRA Paper 46026, University Library of Munich, Germany.
    6. Ledyard Tucker, 1966. "Some mathematical notes on three-mode factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 31(3), pages 279-311, September.
    7. Yin Xia, 2017. "Testing and support recovery of multiple high-dimensional covariance matrices with false discovery rate control," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(4), pages 782-801, December.
    8. Michael Hornstein & Roger Fan & Kerby Shedden & Shuheng Zhou, 2019. "Joint Mean and Covariance Estimation with Unreplicated Matrix-Variate Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 682-696, April.
    9. Ang Li & Rina Foygel Barber, 2019. "Multiple testing with the structure‐adaptive Benjamini–Hochberg algorithm," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(1), pages 45-74, February.
    10. Cai, T. Tony & Zhang, Anru, 2016. "Inference for high-dimensional differential correlation matrices," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 107-126.
    11. Hao Chen & Yin Xia, 2023. "A Normality Test for High-dimensional Data Based on the Nearest Neighbor Approach," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(541), pages 719-731, January.
    12. Yunzhang Zhu & Lexin Li, 2018. "Multiple matrix Gaussian graphs estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(5), pages 927-950, November.
    13. Tony Cai & Weidong Liu & Yin Xia, 2013. "Two-Sample Covariance Matrix Testing and Support Recovery in High-Dimensional and Sparse Settings," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 265-277, March.
    14. P. Constantinou & P. Kokoszka & M. Reimherr, 2017. "Testing separability of space-time functional processes," Biometrika, Biometrika Trust, vol. 104(2), pages 425-437.
    15. Chen, Xin & Yang, Dan & Xu, Yan & Xia, Yin & Wang, Dong & Shen, Haipeng, 2023. "Testing and support recovery of correlation structures for matrix-valued observations with an application to stock market data," Journal of Econometrics, Elsevier, vol. 232(2), pages 544-564.
    16. Yuqing Pan & Qing Mai & Xin Zhang, 2019. "Covariate-Adjusted Tensor Classification in High Dimensions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1305-1319, July.
    17. Lexin Li & Xin Zhang, 2017. "Parsimonious Tensor Response Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1131-1146, July.
    18. Cai, Tony & Liu, Weidong, 2011. "Adaptive Thresholding for Sparse Covariance Matrix Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 672-684.
    19. Josef Schosser, 2022. "Tensor extrapolation: Forecasting large-scale relational data," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 73(5), pages 969-978, May.
    20. Jacob M Zahn & Suresh Poosala & Art B Owen & Donald K Ingram & Ana Lustig & Arnell Carter & Ashani T Weeraratna & Dennis D Taub & Myriam Gorospe & Krystyna Mazan-Mamczarz & Edward G Lakatta & Kenneth , 2007. "AGEMAP: A Gene Expression Database for Aging in Mice," PLOS Genetics, Public Library of Science, vol. 3(11), pages 1-12, November.
    21. Yin Xia & T. Tony Cai & Wenguang Sun, 2020. "GAP: A General Framework for Information Pooling in Two-Sample Sparse Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(531), pages 1236-1250, July.
    22. Yin Xia & Lexin Li, 2017. "Hypothesis testing of matrix graph model with application to brain connectivity analysis," Biometrics, The International Biometric Society, vol. 73(3), pages 780-791, September.
    23. Chenlei Leng & Cheng Yong Tang, 2012. "Sparse Matrix Graphical Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1187-1200, September.
    24. T. Tony Cai & Weidong Liu, 2016. "Large-Scale Multiple Testing of Correlations," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 229-240, March.
    25. He, Shiyuan & Yin, Jianxin & Li, Hongzhe & Wang, Xing, 2014. "Graphical model selection and estimation for high dimensional tensor data," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 165-185.
    26. Jie Zhou & Will Wei Sun & Jingfei Zhang & Lexin Li, 2023. "Partially Observed Dynamic Tensor Response Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(541), pages 424-439, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xin & Yang, Dan & Xu, Yan & Xia, Yin & Wang, Dong & Shen, Haipeng, 2023. "Testing and support recovery of correlation structures for matrix-valued observations with an application to stock market data," Journal of Econometrics, Elsevier, vol. 232(2), pages 544-564.
    2. T. Tony Cai & Zijian Guo & Yin Xia, 2023. "Statistical inference and large-scale multiple testing for high-dimensional regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(4), pages 1135-1171, December.
    3. Yin Xia & Lexin Li, 2017. "Hypothesis testing of matrix graph model with application to brain connectivity analysis," Biometrics, The International Biometric Society, vol. 73(3), pages 780-791, September.
    4. Yin Xia, 2017. "Testing and support recovery of multiple high-dimensional covariance matrices with false discovery rate control," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(4), pages 782-801, December.
    5. Jiadong Ji & Yong He & Lei Liu & Lei Xie, 2021. "Brain connectivity alteration detection via matrix‐variate differential network model," Biometrics, The International Biometric Society, vol. 77(4), pages 1409-1421, December.
    6. Dong Liu & Changwei Zhao & Yong He & Lei Liu & Ying Guo & Xinsheng Zhang, 2023. "Simultaneous cluster structure learning and estimation of heterogeneous graphs for matrix‐variate fMRI data," Biometrics, The International Biometric Society, vol. 79(3), pages 2246-2259, September.
    7. Zeyu Wu & Cheng Wang & Weidong Liu, 2023. "A unified precision matrix estimation framework via sparse column-wise inverse operator under weak sparsity," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(4), pages 619-648, August.
    8. Cai, T. Tony & Zhang, Anru, 2016. "Inference for high-dimensional differential correlation matrices," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 107-126.
    9. Long Feng & Tiefeng Jiang & Binghui Liu & Wei Xiong, 2020. "Max-sum tests for cross-sectional dependence of high-demensional panel data," Papers 2007.03911, arXiv.org.
    10. Niu, Lu & Liu, Xiumin & Zhao, Junlong, 2020. "Robust estimator of the correlation matrix with sparse Kronecker structure for a high-dimensional matrix-variate," Journal of Multivariate Analysis, Elsevier, vol. 177(C).
    11. Zhang, Yangchun & Zhou, Yirui & Liu, Xiaowei, 2023. "Applications on linear spectral statistics of high-dimensional sample covariance matrix with divergent spectrum," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    12. Wessel N. van Wieringen & Carel F. W. Peeters & Renee X. de Menezes & Mark A. van de Wiel, 2018. "Testing for pathway (in)activation by using Gaussian graphical models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1419-1436, November.
    13. Zhou Tang & Zhangsheng Yu & Cheng Wang, 2020. "A fast iterative algorithm for high-dimensional differential network," Computational Statistics, Springer, vol. 35(1), pages 95-109, March.
    14. Chen, Song Xi & Guo, Bin & Qiu, Yumou, 2023. "Testing and signal identification for two-sample high-dimensional covariances via multi-level thresholding," Journal of Econometrics, Elsevier, vol. 235(2), pages 1337-1354.
    15. Li, Degui, 2024. "Estimation of Large Dynamic Covariance Matrices: A Selective Review," Econometrics and Statistics, Elsevier, vol. 29(C), pages 16-30.
    16. Kai Deng & Xin Zhang, 2022. "Tensor envelope mixture model for simultaneous clustering and multiway dimension reduction," Biometrics, The International Biometric Society, vol. 78(3), pages 1067-1079, September.
    17. Guo, Wenwen & Cui, Hengjian, 2019. "Projection tests for high-dimensional spiked covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 21-32.
    18. Chen, Yu & Hu, Zongqing & Hu, Jie & Shu, Lei, 2025. "Block structure-based covariance tensor decomposition for group identification in matrix variables," Statistics & Probability Letters, Elsevier, vol. 216(C).
    19. Zhidong Bai & Jiang Hu & Chen Wang & Chao Zhang, 2021. "Test on the linear combinations of covariance matrices in high-dimensional data," Statistical Papers, Springer, vol. 62(2), pages 701-719, April.
    20. Xiumin Liu & Lu Niu & Junlong Zhao, 2023. "Statistical inference on the significance of rows and columns for matrix-valued data in an additive model," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(3), pages 785-828, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:206:y:2025:i:c:s0047259x24001027. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.