IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v205y2025ics0047259x24000794.html
   My bibliography  Save this article

Data depth functions for non-standard data by use of formal concept analysis

Author

Listed:
  • Blocher, Hannah
  • Schollmeyer, Georg

Abstract

In this article we introduce a notion of depth functions for data types that are not given in standard statistical data formats. We focus on data that cannot be represented by one specific data structure, such as normed vector spaces. This covers a wide range of different data types, which we refer to as non-standard data. Depth functions have been studied intensively for normed vector spaces. However, a discussion of depth functions for non-standard data is lacking. In this article, we address this gap by using formal concept analysis to obtain a unified data representation. Building on this representation, we then define depth functions for non-standard data. Furthermore, we provide a systematic basis by introducing structural properties using the data representation provided by formal concept analysis. Finally, we embed the generalised Tukey depth into our concept of data depth and analyse it using the introduced structural properties. Thus, this article presents the mathematical formalisation of centrality and outlyingness for non-standard data and increases the number of spaces in which centrality can be discussed. In particular, we provide a basis for defining further depth functions and statistical inference methods for non-standard data.

Suggested Citation

  • Blocher, Hannah & Schollmeyer, Georg, 2025. "Data depth functions for non-standard data by use of formal concept analysis," Journal of Multivariate Analysis, Elsevier, vol. 205(C).
  • Handle: RePEc:eee:jmvana:v:205:y:2025:i:c:s0047259x24000794
    DOI: 10.1016/j.jmva.2024.105372
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X24000794
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2024.105372?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:205:y:2025:i:c:s0047259x24000794. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.