IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v179y2020ics0047259x20302323.html
   My bibliography  Save this article

A Conway–Maxwell-multinomial distribution for flexible modeling of clustered categorical data

Author

Listed:
  • Morris, Darcy Steeg
  • Raim, Andrew M.
  • Sellers, Kimberly F.

Abstract

Categorical data are often observed as counts resulting from a fixed number of trials in which each trial consists of making one selection from a prespecified set of categories. The multinomial distribution serves as a standard model for such data but assumes that trials are independent and identically distributed. Extensions such as the Dirichlet-multinomial and random-clumped multinomial distribution can express positive association, where trials are more likely to result in a common category due to membership in a common cluster. This work considers a Conway–Maxwell-multinomial (CMM) distribution for modeling clustered categorical data exhibiting positively or negatively associated trials. The CMM distribution features a dispersion parameter which allows it to adapt to a range of association levels and includes several recognizable distributions as special cases. We explore properties of CMM, illustrate its flexible characteristics, identify a method to efficiently compute maximum likelihood (ML) estimates, present simulations of small sample properties under ML estimation, and demonstrate the model via data analysis examples.

Suggested Citation

  • Morris, Darcy Steeg & Raim, Andrew M. & Sellers, Kimberly F., 2020. "A Conway–Maxwell-multinomial distribution for flexible modeling of clustered categorical data," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
  • Handle: RePEc:eee:jmvana:v:179:y:2020:i:c:s0047259x20302323
    DOI: 10.1016/j.jmva.2020.104651
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X20302323
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2020.104651?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert E. Gaunt & Satish Iyengar & Adri B. Olde Daalhuis & Burcin Simsek, 2019. "An asymptotic expansion for the normalizing constant of the Conway–Maxwell–Poisson distribution," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(1), pages 163-180, February.
    2. Sellers, Kimberly F. & Morris, Darcy Steeg & Balakrishnan, Narayanaswamy, 2016. "Bivariate Conway–Maxwell–Poisson distribution: Formulation, properties, and inference," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 152-168.
    3. Galit Shmueli & Thomas P. Minka & Joseph B. Kadane & Sharad Borle & Peter Boatwright, 2005. "A useful distribution for fitting discrete data: revival of the Conway–Maxwell–Poisson distribution," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(1), pages 127-142, January.
    4. Gauss Cordeiro & Josemar Rodrigues & Mário Castro, 2012. "The exponential COM-Poisson distribution," Statistical Papers, Springer, vol. 53(3), pages 653-664, August.
    5. Kimberly F. Sellers & Sharad Borle & Galit Shmueli, 2012. "The COM‐Poisson model for count data: a survey of methods and applications," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 28(2), pages 104-116, March.
    6. Altham, Pat M. E. & Hankin, Robin K. S., 2012. "Multivariate Generalizations of the Multiplicative Binomial Distribution: Introducing the MM Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 46(i12).
    7. Lindsey, J. K. & Mersch, G., 1992. "Fitting and comparing probability distributions with log linear models," Computational Statistics & Data Analysis, Elsevier, vol. 13(4), pages 373-384, May.
    8. Borges, Patrick & Rodrigues, Josemar & Balakrishnan, Narayanaswamy & Bazán, Jorge, 2014. "A COM–Poisson type generalization of the binomial distribution and its properties and applications," Statistics & Probability Letters, Elsevier, vol. 87(C), pages 158-166.
    9. Kimberly F. Sellers & Andrew W. Swift & Kimberly S. Weems, 2017. "Correction to: a flexible distribution class for count data," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-1, December.
    10. Kimberly F. Sellers & Andrew W. Swift & Kimberly S. Weems, 2017. "A flexible distribution class for count data," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-21, December.
    11. S. Chakraborty & S. H. Ong, 2016. "A COM-Poisson-type generalization of the negative binomial distribution," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(14), pages 4117-4135, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Corsini, Noemi & Viroli, Cinzia, 2022. "Dealing with overdispersion in multivariate count data," Computational Statistics & Data Analysis, Elsevier, vol. 170(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seng Huat Ong & Shin Zhu Sim & Shuangzhe Liu & Hari M. Srivastava, 2023. "A Family of Finite Mixture Distributions for Modelling Dispersion in Count Data," Stats, MDPI, vol. 6(3), pages 1-14, September.
    2. Kimberly F. Sellers & Ali Arab & Sean Melville & Fanyu Cui, 2021. "A flexible univariate moving average time-series model for dispersed count data," Journal of Statistical Distributions and Applications, Springer, vol. 8(1), pages 1-12, December.
    3. Bedbur, S. & Kamps, U., 2023. "Uniformly most powerful unbiased tests for the dispersion parameter of the Conway–Maxwell–Poisson distribution," Statistics & Probability Letters, Elsevier, vol. 196(C).
    4. Kimberly F. Sellers & Andrew W. Swift & Kimberly S. Weems, 2017. "A flexible distribution class for count data," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-21, December.
    5. Kimberly F. Sellers & Tong Li & Yixuan Wu & Narayanaswamy Balakrishnan, 2021. "A Flexible Multivariate Distribution for Correlated Count Data," Stats, MDPI, vol. 4(2), pages 1-19, April.
    6. Darcy Steeg Morris & Kimberly F. Sellers, 2022. "A Flexible Mixed Model for Clustered Count Data," Stats, MDPI, vol. 5(1), pages 1-18, January.
    7. Subrata Chakraborty & S. H. Ong, 2017. "Mittag - Leffler function distribution - a new generalization of hyper-Poisson distribution," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-17, December.
    8. Rajib Dey & M. Ataharul Islam, 2017. "A conditional count model for repeated count data and its application to GEE approach," Statistical Papers, Springer, vol. 58(2), pages 485-504, June.
    9. Rodrigues, Josemar & Bazán, Jorge L. & Suzuki, Adriano K. & Balakrishnan, Narayanaswamy, 2016. "The Bayesian restricted Conway–Maxwell-Binomial model to control dispersion in count data," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 281-288.
    10. Douglas Toledo & Cristiane Akemi Umetsu & Antonio Fernando Monteiro Camargo & Idemauro Antonio Rodrigues Lara, 2022. "Flexible models for non-equidispersed count data: comparative performance of parametric models to deal with underdispersion," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(3), pages 473-497, September.
    11. Rufin Bidounga & Evrand Giles Brunel Mandangui Maloumbi & Réolie Foxie Mizélé Kitoti & Dominique Mizère, 2020. "The New Bivariate Conway-Maxwell-Poisson Distribution Obtained by the Crossing Method," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 9(6), pages 1-1, November.
    12. Mamode Khan Naushad & Rumjaun Wasseem & Sunecher Yuvraj & Jowaheer Vandna, 2017. "Computing with bivariate COM-Poisson model under different copulas," Monte Carlo Methods and Applications, De Gruyter, vol. 23(2), pages 131-146, June.
    13. Xun-Jian Li & Guo-Liang Tian & Mingqian Zhang & George To Sum Ho & Shuang Li, 2023. "Modeling Under-Dispersed Count Data by the Generalized Poisson Distribution via Two New MM Algorithms," Mathematics, MDPI, vol. 11(6), pages 1-24, March.
    14. María Alonso‐Pena & Irène Gijbels & Rosa M. Crujeiras, 2023. "Flexible joint modeling of mean and dispersion for the directional tuning of neuronal spike counts," Biometrics, The International Biometric Society, vol. 79(4), pages 3431-3444, December.
    15. Gauss Cordeiro & Josemar Rodrigues & Mário Castro, 2012. "The exponential COM-Poisson distribution," Statistical Papers, Springer, vol. 53(3), pages 653-664, August.
    16. Jorge Mateu & Francisco Montes, 2001. "Pseudo-likelihood Inference for Gibbs Processes with Exponential Families through Generalized Linear Models," Statistical Inference for Stochastic Processes, Springer, vol. 4(2), pages 125-154, May.
    17. Mevin B. Hooten & Michael R. Schwob & Devin S. Johnson & Jacob S. Ivan, 2023. "Multistage hierarchical capture–recapture models," Environmetrics, John Wiley & Sons, Ltd., vol. 34(6), September.
    18. Can Zhou & Yan Jiao & Joan Browder, 2019. "How much do we know about seabird bycatch in pelagic longline fisheries? A simulation study on the potential bias caused by the usually unobserved portion of seabird bycatch," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-19, August.
    19. Joseph B. Kadane & Ramayya Krishnan & Galit Shmueli, 2006. "A Data Disclosure Policy for Count Data Based on the COM-Poisson Distribution," Management Science, INFORMS, vol. 52(10), pages 1610-1617, October.
    20. Jones, M.C. & Marchand, Éric, 2019. "Multivariate discrete distributions via sums and shares," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 83-93.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:179:y:2020:i:c:s0047259x20302323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.