IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v13y1983i1p177-186.html
   My bibliography  Save this article

A sampling theorem for multivariate stationary processes

Author

Listed:
  • Pourahmadi, Mohsen

Abstract

The notion of sampling for second-order q-variate processes is defined. It is shown that if the components of a q-variate process (not necessarily stationary) admits a sampling theorem with some sample spacing, then the process itself admits a sampling theorem with the same sample spacing. A sampling theorem for q-variate stationary processes, under a periodicity condition on the range of the spectral measure of the process, is proved in the spirit of Lloy's work. This sampling theorem is used to show that if a q-variate stationary process admits a sampling theorem, then each of its components will admit a sampling theorem too.

Suggested Citation

  • Pourahmadi, Mohsen, 1983. "A sampling theorem for multivariate stationary processes," Journal of Multivariate Analysis, Elsevier, vol. 13(1), pages 177-186, March.
  • Handle: RePEc:eee:jmvana:v:13:y:1983:i:1:p:177-186
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0047-259X(83)90012-X
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:13:y:1983:i:1:p:177-186. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.