IDEAS home Printed from
   My bibliography  Save this article

On the convergence of a bounded amart and a conjecture of Chatterji


  • Schmidt, Klaus D.


Through the decomposition theorem of Lebesgue and Darst it is possible to define a generalized Radon-Nikodym derivative of a bounded additive set function with respect to a bounded countably additive set function. For a bounded amart the derivatives of the components are shown to converge almost everywhere. This result, together with a characterization of amarts, yields a theorem stated by Chatterji whose proof is incorrect.

Suggested Citation

  • Schmidt, Klaus D., 1981. "On the convergence of a bounded amart and a conjecture of Chatterji," Journal of Multivariate Analysis, Elsevier, vol. 11(1), pages 58-68, March.
  • Handle: RePEc:eee:jmvana:v:11:y:1981:i:1:p:58-68

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:11:y:1981:i:1:p:58-68. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.