IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Large deviations for random matricial moment problems

Listed author(s):
  • Gamboa, Fabrice
  • Nagel, Jan
  • Rouault, Alain
  • Wagener, Jens
Registered author(s):

    We consider the moment space MnK corresponding to p×p complex matrix measures defined on K (K=[0,1] or K=T). We endow this set with the uniform distribution. We are mainly interested in large deviation principles (LDPs) when n→∞. First we fix an integer k and study the vector of the first k components of a random element of MnK. We obtain an LDP in the set of k-arrays of p×p matrices. Then we lift a random element of MnK into a random measure and prove an LDP at the level of random measures. We end with an LDP on Carathéodory and Schur random functions. These last functions are well connected to the above random measure. In all these problems, we take advantage of the so-called canonical moments technique by introducing new (matricial) random variables that are independent and have explicit distributions.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Journal of Multivariate Analysis.

    Volume (Year): 106 (2012)
    Issue (Month): C ()
    Pages: 17-35

    in new window

    Handle: RePEc:eee:jmvana:v:106:y:2012:i:c:p:17-35
    DOI: 10.1016/j.jmva.2011.11.006
    Contact details of provider: Web page:

    Order Information: Postal:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:106:y:2012:i:c:p:17-35. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.