IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v41y2025i4p1636-1652.html
   My bibliography  Save this article

SCORE: A convolutional approach for football event forecasting

Author

Listed:
  • Alves, Rodrigo

Abstract

Football (also known as soccer or association football) is the most popular sport in the world. It is a blend of skill and luck, making it highly unpredictable. To address this unpredictability, there has been a surge in popularity over the past decade in employing machine learning techniques for forecasting football-related features. This trend aligns with the growing professionalism in football analytics. Despite this progress, the existing body of work remains in its early stages, lacking the depth required to capture the intricate nuances of the sport. In this study, we introduce a convolutional approach designed to predict the occurrence of the next event in a football match, such as a goal or a corner kick, relying solely on easy-to-access past events for predictions. Our methodology adopts an online approach, meaning predictions can be computed during a live match. To validate our approach, we conduct a comprehensive evaluation against five baseline models, utilizing data from various elite European football leagues. Additionally, an ablation study is performed to understand the underlying mechanisms of our method. Finally, we present practical applications and interpretable aspects of our proposed approach.

Suggested Citation

  • Alves, Rodrigo, 2025. "SCORE: A convolutional approach for football event forecasting," International Journal of Forecasting, Elsevier, vol. 41(4), pages 1636-1652.
  • Handle: RePEc:eee:intfor:v:41:y:2025:i:4:p:1636-1652
    DOI: 10.1016/j.ijforecast.2025.02.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207025000111
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2025.02.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:41:y:2025:i:4:p:1636-1652. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.