IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v41y2025i4p1355-1382.html
   My bibliography  Save this article

A survey of models and methods used for forecasting when investing in financial markets

Author

Listed:
  • Maung, Kenwin
  • Swanson, Norman R.

Abstract

The Makridakis M6 Financial Duathalon competition builds on prior M-competitions that focus on the properties of point and probabilistic forecasts of random variables by also evaluating investment decisions in financial markets. In particular, the M6 competition evaluates both forecasts and investment outcomes associated with the analysis of a large group of financial time series variables. Given the importance of return and risk forecasting when making investment decisions, a natural question in this context concerns what sorts of methods and models are available for said forecasting and were used by participants of the competition. In this survey, we discuss such methods and models, with a specific focus on the construction of financial time series forecasts using approaches designed for both discrete and continuous time setups and using both small and large (high dimensional and/or high frequency) datasets. Examples covered range from simple random walk-type models of returns to parametric GARCH and nonparametric integrated volatility methods for forecasting volatility (risk). We also present the results of a novel empirical illustration that underscores the difficulty in forecasting financial returns, even when using so-called big data.

Suggested Citation

  • Maung, Kenwin & Swanson, Norman R., 2025. "A survey of models and methods used for forecasting when investing in financial markets," International Journal of Forecasting, Elsevier, vol. 41(4), pages 1355-1382.
  • Handle: RePEc:eee:intfor:v:41:y:2025:i:4:p:1355-1382
    DOI: 10.1016/j.ijforecast.2025.03.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207025000305
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2025.03.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:41:y:2025:i:4:p:1355-1382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.