IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v26yi4p647-651.html
   My bibliography  Save this article

Exponentionally weighted methods for forecasting intraday time series with multiple seasonal cycles: Comments

Author

Listed:
  • Koopman, S.J.
  • Ooms, M.

Abstract

No abstract is available for this item.

Suggested Citation

  • Koopman, S.J. & Ooms, M., 2010. "Exponentionally weighted methods for forecasting intraday time series with multiple seasonal cycles: Comments," International Journal of Forecasting, Elsevier, vol. 26(4), pages 647-651, October.
  • Handle: RePEc:eee:intfor:v:26:y::i:4:p:647-651
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169-2070(10)00100-7
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tych, Wlodek & Pedregal, Diego J. & Young, Peter C. & Davies, John, 2002. "An unobserved component model for multi-rate forecasting of telephone call demand: the design of a forecasting support system," International Journal of Forecasting, Elsevier, pages 673-695.
    2. Alysha M De Livera & Rob J Hyndman, 2009. "Forecasting time series with complex seasonal patterns using exponential smoothing," Monash Econometrics and Business Statistics Working Papers 15/09, Monash University, Department of Econometrics and Business Statistics.
    3. Taylor, James W., 2007. "Forecasting daily supermarket sales using exponentially weighted quantile regression," European Journal of Operational Research, Elsevier, vol. 178(1), pages 154-167, April.
    4. Chris Brooks & Melvin J. Hinich, 2006. "Detecting intraday periodicities with application to high frequency exchange rates," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 55(2), pages 241-259.
    5. James W. Taylor, 2008. "A Comparison of Univariate Time Series Methods for Forecasting Intraday Arrivals at a Call Center," Management Science, INFORMS, pages 253-265.
    6. Noah Gans & Ger Koole & Avishai Mandelbaum, 2003. "Telephone Call Centers: Tutorial, Review, and Research Prospects," Manufacturing & Service Operations Management, INFORMS, pages 79-141.
    7. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    8. Gould, Phillip G. & Koehler, Anne B. & Ord, J. Keith & Snyder, Ralph D. & Hyndman, Rob J. & Vahid-Araghi, Farshid, 2008. "Forecasting time series with multiple seasonal patterns," European Journal of Operational Research, Elsevier, vol. 191(1), pages 207-222, November.
    9. John Foster & Melvin Hinich & Phillip Wild, 2008. "Randomly Modulated Periodic Signals in Australias National Electricity Market," Energy Economics and Management Group Working Papers 2-2008, School of Economics, University of Queensland, Australia.
    10. John Foster & Melvin J. Hinich & Phillip Wild, 2008. "Randomly Modulated Periodic Signals in Australias National Electricity Market," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 105-130.
    11. William Lam & Y. Tang & K. Chan & Mei-Lam Tam, 2006. "Short-term Hourly Traffic Forecasts using Hong Kong Annual Traffic Census," Transportation, Springer, pages 291-310.
    12. Weinberg, Jonathan & Brown, Lawrence D. & Stroud, Jonathan R., 2007. "Bayesian Forecasting of an Inhomogeneous Poisson Process With Applications to Call Center Data," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1185-1198, December.
    13. Taylor, James W. & de Menezes, Lilian M. & McSharry, Patrick E., 2006. "A comparison of univariate methods for forecasting electricity demand up to a day ahead," International Journal of Forecasting, Elsevier, pages 1-16.
    14. Haipeng Shen & Jianhua Z. Huang, 2008. "Interday Forecasting and Intraday Updating of Call Center Arrivals," Manufacturing & Service Operations Management, INFORMS, pages 391-410.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:26:y::i:4:p:647-651. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.