IDEAS home Printed from https://ideas.repec.org/a/eee/ininma/v49y2019icp86-97.html
   My bibliography  Save this article

A supervised machine learning approach to data-driven simulation of resilient supplier selection in digital manufacturing

Author

Listed:
  • Cavalcante, Ian M.
  • Frazzon, Enzo M.
  • Forcellini, Fernando A.
  • Ivanov, Dmitry

Abstract

There has been an increased interest in resilient supplier selection in recent years, much of it focusing on forecasting the disruption probabilities. We conceptualize an entirely different approach to analyzing the risk profiles of supplier performance under uncertainty by utilizing the data analytics capabilities in digital manufacturing. Digital manufacturing peculiarly challenge the supplier selection by the dynamic order allocations, and opens new opportunities to exploit the digital data to improve sourcing decisions. We develop a hybrid technique, combining simulation and machine learning and examine its applications to data-driven decision-making support in resilient supplier selection. We consider on-time delivery as an indicator for supplier reliability, and explore the conditions surrounding the formation of resilient supply performance profiles. We theorize the notions of risk profile of supplier performance and resilient supply chain performance. We show that the associations of the deviations from the resilient supply chain performance profile with the risk profiles of supplier performance can be efficiently deciphered by our approach. The results suggest that a combination of supervised machine learning and simulation, if utilized properly, improves the delivery reliability. Our approach can also be of value when analyzing the supplier base and uncovering the critical suppliers, or combinations of suppliers the disruption of which result in the adverse performance decreases. The results of this study advance our understanding about how and when machine learning and simulation can be combined to create digital supply chain twins, and through these twins improve resilience. The proposed data-driven decision-making model for resilient supplier selection can be further exploited for design of risk mitigation strategies in supply chain disruption management models, re-designing the supplier base or investing in most important and risky suppliers.

Suggested Citation

  • Cavalcante, Ian M. & Frazzon, Enzo M. & Forcellini, Fernando A. & Ivanov, Dmitry, 2019. "A supervised machine learning approach to data-driven simulation of resilient supplier selection in digital manufacturing," International Journal of Information Management, Elsevier, vol. 49(C), pages 86-97.
  • Handle: RePEc:eee:ininma:v:49:y:2019:i:c:p:86-97
    DOI: 10.1016/j.ijinfomgt.2019.03.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0268401219301422
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijinfomgt.2019.03.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dmitry Ivanov & Alexandre Dolgui, 2022. "Stress testing supply chains and creating viable ecosystems," Operations Management Research, Springer, vol. 15(1), pages 475-486, June.
    2. Alexander Pavlov & Dmitry Ivanov & Frank Werner & Alexandre Dolgui & Boris Sokolov, 2022. "Integrated detection of disruption scenarios, the ripple effect dispersal and recovery paths in supply chains," Annals of Operations Research, Springer, vol. 319(1), pages 609-631, December.
    3. Issam Laguir & Sachin Modgil & Indranil Bose & Shivam Gupta & Rebecca Stekelorum, 2023. "Performance effects of analytics capability, disruption orientation, and resilience in the supply chain under environmental uncertainty," Annals of Operations Research, Springer, vol. 324(1), pages 1269-1293, May.
    4. Seyedmohsen Hosseini & Dmitry Ivanov, 2022. "A new resilience measure for supply networks with the ripple effect considerations: a Bayesian network approach," Annals of Operations Research, Springer, vol. 319(1), pages 581-607, December.
    5. Sawik, Tadeusz, 2022. "Stochastic optimization of supply chain resilience under ripple effect: A COVID-19 pandemic related study," Omega, Elsevier, vol. 109(C).
    6. Shraddha Mishra & Surya Prakash Singh, 2022. "A stochastic disaster-resilient and sustainable reverse logistics model in big data environment," Annals of Operations Research, Springer, vol. 319(1), pages 853-884, December.
    7. Timothy C. Y. Chan & Daniel Letourneau & Benjamin G. Potter, 2022. "Sparse flexible design: a machine learning approach," Flexible Services and Manufacturing Journal, Springer, vol. 34(4), pages 1066-1116, December.
    8. Giuseppe Fragapane & Dmitry Ivanov & Mirco Peron & Fabio Sgarbossa & Jan Ola Strandhagen, 2022. "Increasing flexibility and productivity in Industry 4.0 production networks with autonomous mobile robots and smart intralogistics," Annals of Operations Research, Springer, vol. 308(1), pages 125-143, January.
    9. Efpraxia D. Zamani & Conn Smyth & Samrat Gupta & Denis Dennehy, 2023. "Artificial intelligence and big data analytics for supply chain resilience: a systematic literature review," Annals of Operations Research, Springer, vol. 327(2), pages 605-632, August.
    10. Brusset, Xavier & Ivanov, Dmitry & Jebali, Aida & La Torre, Davide & Repetto, Marco, 2023. "A dynamic approach to supply chain reconfiguration and ripple effect analysis in an epidemic," International Journal of Production Economics, Elsevier, vol. 263(C).
    11. Ahmed Zainul Abideen & Veera Pandiyan Kaliani Sundram & Jaafar Pyeman & Abdul Kadir Othman & Shahryar Sorooshian, 2021. "Digital Twin Integrated Reinforced Learning in Supply Chain and Logistics," Logistics, MDPI, vol. 5(4), pages 1-22, November.
    12. Núñez-Merino, Miguel & Maqueira-Marín, Juan Manuel & Moyano-Fuentes, José & Castaño-Moraga, Carlos Alberto, 2022. "Industry 4.0 and supply chain. A Systematic Science Mapping analysis," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    13. Tüzün Tolga İnan & Neslihan Gökmen İnan, 2022. "The analysis of fatal aviation accidents more than 100 dead passengers: an application of machine learning," OPSEARCH, Springer;Operational Research Society of India, vol. 59(4), pages 1377-1395, December.
    14. Zhao, Nanyang & Hong, Jiangtao & Lau, Kwok Hung, 2023. "Impact of supply chain digitalization on supply chain resilience and performance: A multi-mediation model," International Journal of Production Economics, Elsevier, vol. 259(C).
    15. Brylowski, Martin & Schröder, Meike & Lodemann, Sebastian & Kersten, Wolfgang, 2021. "Machine learning in supply chain management: A scoping review," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Ringle, Christian M. & Blecker, Thorsten (ed.), Adapting to the Future: How Digitalization Shapes Sustainable Logistics and Resilient Supply Chain Management. Proceedings of the Hamburg Internationa, volume 31, pages 377-406, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    16. Farheen Naz & Anil Kumar & Abhijit Majumdar & Rohit Agrawal, 2022. "Is artificial intelligence an enabler of supply chain resiliency post COVID-19? An exploratory state-of-the-art review for future research," Operations Management Research, Springer, vol. 15(1), pages 378-398, June.
    17. Hu, Shaolong & Dong, Zhijie Sasha & Lev, Benjamin, 2022. "Supplier selection in disaster operations management: Review and research gap identification," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    18. Simonetto, Marco & Sgarbossa, Fabio & Battini, Daria & Govindan, Kannan, 2022. "Closed loop supply chains 4.0: From risks to benefits through advanced technologies. A literature review and research agenda," International Journal of Production Economics, Elsevier, vol. 253(C).
    19. Meike Schroeder & Sebastian Lodemann, 2021. "A Systematic Investigation of the Integration of Machine Learning into Supply Chain Risk Management," Logistics, MDPI, vol. 5(3), pages 1-17, September.
    20. Chaima Ben Abdallah & Adnen El-Amraoui & François Delmotte & Ahmed Frikha, 2024. "A Hybrid Approach for Sustainable and Resilient Farmer Selection in Food Industry: Tunisian Case Study," Sustainability, MDPI, vol. 16(5), pages 1-31, February.
    21. Bernard Kamsu-Foguem & Philippe Clermont & Dieudonné Tchuente & Pierre Tiako & Samuel Fosso Wamba, 2023. "Service Provider Risk Mitigation in Aeronautics Supply Chains," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 24(4), pages 615-631, December.
    22. Dmitry Ivanov, 2022. "Viable supply chain model: integrating agility, resilience and sustainability perspectives—lessons from and thinking beyond the COVID-19 pandemic," Annals of Operations Research, Springer, vol. 319(1), pages 1411-1431, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ininma:v:49:y:2019:i:c:p:86-97. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-information-management .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.