Evolutionary clustering for categorical data using parametric links among multinomial mixture models
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ecosta.2017.03.004
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Biernacki, Christophe & Celeux, Gilles & Govaert, Gerard & Langrognet, Florent, 2006. "Model-based cluster and discriminant analysis with the MIXMOD software," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 587-600, November.
- Biernacki, Christophe & Celeux, Gilles & Govaert, Gerard, 2003. "Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 561-575, January.
- Jean-Charles Lamirel, 2012. "A new approach for automatizing the analysis of research topics dynamics: application to optoelectronics research," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(1), pages 151-166, October.
- Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
- Christophe Biernacki & Farid Beninel & Vincent Bretagnolle, 2002. "A Generalized Discriminant Rule When Training Population and Test Population Differ on Their Descriptive Parameters," Biometrics, The International Biometric Society, vol. 58(2), pages 387-397, June.
- J. Jacques & C. Biernacki, 2010. "Extension of model-based classification for binary data when training and test populations differ," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(5), pages 749-766.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dirick, Lore & Claeskens, Gerda & Vasnev, Andrey & Baesens, Bart, 2022.
"A hierarchical mixture cure model with unobserved heterogeneity for credit risk,"
Econometrics and Statistics, Elsevier, vol. 22(C), pages 39-55.
- Lore Dirick & Gerda Claeskens & Andrey Vasnev & Bart Baesens, 2020. "A hierarchical mixture cure model with unobserved heterogeneity for credit risk," Working Papers of Department of Decision Sciences and Information Management, Leuven 665250, KU Leuven, Faculty of Economics and Business (FEB), Department of Decision Sciences and Information Management, Leuven.
- Jacques, Julien & Biernacki, Christophe, 2018. "Model-based co-clustering for ordinal data," Computational Statistics & Data Analysis, Elsevier, vol. 123(C), pages 101-115.
- Schatz, Michael & Wheatley, Spencer & Sornette, Didier, 2022. "The ARMA Point Process and its Estimation," Econometrics and Statistics, Elsevier, vol. 24(C), pages 164-182.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Luca Scrucca & Adrian Raftery, 2015. "Improved initialisation of model-based clustering using Gaussian hierarchical partitions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(4), pages 447-460, December.
- Galimberti, Giuliano & Soffritti, Gabriele, 2014. "A multivariate linear regression analysis using finite mixtures of t distributions," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 138-150.
- Riccardo Rastelli & Michael Fop, 2020. "A stochastic block model for interaction lengths," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 485-512, June.
- Melnykov, Volodymyr, 2016. "Model-based biclustering of clickstream data," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 31-45.
- Zhu, Xuwen & Melnykov, Volodymyr, 2018. "Manly transformation in finite mixture modeling," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 190-208.
- Lebret, Rémi & Iovleff, Serge & Langrognet, Florent & Biernacki, Christophe & Celeux, Gilles & Govaert, Gérard, 2015. "Rmixmod: The R Package of the Model-Based Unsupervised, Supervised, and Semi-Supervised Classification Mixmod Library," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i06).
- Roberto Mari & Salvatore Ingrassia & Antonio Punzo, 2023. "Local and Overall Deviance R-Squared Measures for Mixtures of Generalized Linear Models," Journal of Classification, Springer;The Classification Society, vol. 40(2), pages 233-266, July.
- Melnykov, Volodymyr & Melnykov, Igor, 2012. "Initializing the EM algorithm in Gaussian mixture models with an unknown number of components," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1381-1395.
- Melnykov, Volodymyr, 2016. "ClickClust: An R Package for Model-Based Clustering of Categorical Sequences," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 74(i09).
- Jeffrey Andrews & Paul McNicholas, 2014. "Variable Selection for Clustering and Classification," Journal of Classification, Springer;The Classification Society, vol. 31(2), pages 136-153, July.
- You, Na & Dai, Hongsheng & Wang, Xueqin & Yu, Qingyun, 2024. "Sequential estimation for mixture of regression models for heterogeneous population," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).
- Semhar Michael & Volodymyr Melnykov, 2016. "An effective strategy for initializing the EM algorithm in finite mixture models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(4), pages 563-583, December.
- Melnykov, Volodymyr & Zhu, Xuwen, 2018. "On model-based clustering of skewed matrix data," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 181-194.
- Hung Tong & Cristina Tortora, 2022. "Model-based clustering and outlier detection with missing data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(1), pages 5-30, March.
- Salvatore D. Tomarchio & Antonio Punzo & Antonello Maruotti, 2024. "Matrix-Variate Hidden Markov Regression Models: Fixed and Random Covariates," Journal of Classification, Springer;The Classification Society, vol. 41(3), pages 429-454, November.
- Gabriele Perrone & Gabriele Soffritti, 2024. "Parsimonious Seemingly Unrelated Contaminated Normal Cluster-Weighted Models," Journal of Classification, Springer;The Classification Society, vol. 41(3), pages 533-567, November.
- Paul D. McNicholas, 2016. "Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 331-373, October.
- Morris, Katherine & Punzo, Antonio & McNicholas, Paul D. & Browne, Ryan P., 2019. "Asymmetric clusters and outliers: Mixtures of multivariate contaminated shifted asymmetric Laplace distributions," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 145-166.
- Salvatore D. Tomarchio & Luca Bagnato & Antonio Punzo, 2022. "Model-based clustering via new parsimonious mixtures of heavy-tailed distributions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(2), pages 315-347, June.
- Jason Hou-Liu & Ryan P. Browne, 2024. "Model-Based Clustering with Nested Gaussian Clusters," Journal of Classification, Springer;The Classification Society, vol. 41(1), pages 39-64, March.
More about this item
Keywords
Evolutionary clustering; Multinomial distribution; Mixture model; Model-based clustering; Twitter data;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecosta:v:3:y:2017:i:c:p:141-159. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/econometrics-and-statistics .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.