IDEAS home Printed from https://ideas.repec.org/a/eee/ecosta/v36y2025icp19-36.html
   My bibliography  Save this article

Variable Selection in Macroeconomic Forecasting with Many Predictors

Author

Listed:
  • Wang, Zhenzhong
  • Zhu, Zhengyuan
  • Yu, Cindy

Abstract

In the data-rich environment, using many economic predictors to forecast a few key variables has become a new trend in econometrics. The commonly used approach is factor augment (FA) approach. This paper pursues another direction, variable selection (VS) approach, to handle high-dimensional predictors. VS is an active topic in statistics and computer science. However, it does not receive as much attention as FA in economics. This paper introduces several cutting-edge VS methods to economic forecasting, which includes: (1) classical greedy procedures; (2) l1 regularization; (3) false-discovery-rate control methods, (4) gradient descent with sparsification and (5) meta-heuristic algorithms. Comprehensive simulation studies are conducted to compare their variable selection accuracy and prediction performance under different scenarios. Among the reviewed methods, a meta-heuristic algorithm called sequential Monte Carlo algorithm performs the best. Surprisingly the classical forward selection is comparable to it and better than other more sophisticated algorithms. In addition, these VS methods are applied on economic forecasting and compared with the popular FA approach. It turns out for employment rate and CPI inflation, some VS methods can achieve considerable improvement over FA, and the selected predictors can be well explained by economic theories.

Suggested Citation

  • Wang, Zhenzhong & Zhu, Zhengyuan & Yu, Cindy, 2025. "Variable Selection in Macroeconomic Forecasting with Many Predictors," Econometrics and Statistics, Elsevier, vol. 36(C), pages 19-36.
  • Handle: RePEc:eee:ecosta:v:36:y:2025:i:c:p:19-36
    DOI: 10.1016/j.ecosta.2023.01.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2452306223000035
    Download Restriction: Full text for ScienceDirect subscribers only. Contains open access articles

    File URL: https://libkey.io/10.1016/j.ecosta.2023.01.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecosta:v:36:y:2025:i:c:p:19-36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/econometrics-and-statistics .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.