IDEAS home Printed from https://ideas.repec.org/a/eee/ecosta/v35y2025icp84-100.html

On tail-risk measures for non-integrable heavy-tailed random variables

Author

Listed:
  • Gardes, Laurent

Abstract

The assessment of risk for heavy-tailed distributions is a crucial question in various fields of application. An important family of risk measures is provided by the class of distortion risk (DR) measures which encompasses the Value-at-Risk and the Tail-Value-at-Risk measures. The Tail-Value-at-Risk is a coherent risk measure (which is not the case for the Value-at-Risk) but it is defined only for integrable quantile functions that is to say for heavy-tailed distributions with a tail index smaller than 1. Moreover, it is a matter of fact that the performance of the empirical estimator is strongly deteriorated when the tail index becomes close to 1. The main contribution is the introduction and the estimation of a new risk measure which is defined for all heavy-tailed distributions and which is tail-equivalent to a coherent DR measure when the tail of the underlying distribution is not too heavy. Its finite sample performance is discussed on a fire claims dataset.

Suggested Citation

  • Gardes, Laurent, 2025. "On tail-risk measures for non-integrable heavy-tailed random variables," Econometrics and Statistics, Elsevier, vol. 35(C), pages 84-100.
  • Handle: RePEc:eee:ecosta:v:35:y:2025:i:c:p:84-100
    DOI: 10.1016/j.ecosta.2022.10.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2452306222001083
    Download Restriction: Full text for ScienceDirect subscribers only. Contains open access articles

    File URL: https://libkey.io/10.1016/j.ecosta.2022.10.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Acerbi, Carlo, 2002. "Spectral measures of risk: A coherent representation of subjective risk aversion," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1505-1518, July.
    2. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
    3. Fabio Bellini & Elena Di Bernardino, 2017. "Risk management with expectiles," The European Journal of Finance, Taylor & Francis Journals, vol. 23(6), pages 487-506, May.
    4. Philippe Artzner, 1999. "Application of Coherent Risk Measures to Capital Requirements in Insurance," North American Actuarial Journal, Taylor & Francis Journals, vol. 3(2), pages 11-25.
    5. Freddy Delbaen, 2009. "Risk Measures For Non‐Integrable Random Variables," Mathematical Finance, Wiley Blackwell, vol. 19(2), pages 329-333, April.
    6. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    7. Wang, Shaun, 1996. "Premium Calculation by Transforming the Layer Premium Density," ASTIN Bulletin, Cambridge University Press, vol. 26(1), pages 71-92, May.
    8. Marco Moscadelli, 2004. "The modelling of operational risk: experience with the analysis of the data collected by the Basel Committee," Temi di discussione (Economic working papers) 517, Bank of Italy, Economic Research and International Relations Area.
    9. El Methni, Jonathan & Stupfler, Gilles, 2018. "Improved estimators of extreme Wang distortion risk measures for very heavy-tailed distributions," Econometrics and Statistics, Elsevier, vol. 6(C), pages 129-148.
    10. Laurent Gardes & Stéphane Girard & Gilles Stupfler, 2020. "Beyond tail median and conditional tail expectation: Extreme risk estimation using tail Lp‐optimization," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(3), pages 922-949, September.
    11. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    12. Laurent Gardes & Stéphane Girard, 2021. "On the estimation of the variability in the distribution tail," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(4), pages 884-907, December.
    13. Abdelaati Daouia & Stéphane Girard & Gilles Stupfler, 2018. "Estimation of tail risk based on extreme expectiles," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(2), pages 263-292, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daouia, Abdelaati & Girard, Stéphane & Stupfler, Gilles, 2018. "Tail expectile process and risk assessment," TSE Working Papers 18-944, Toulouse School of Economics (TSE).
    2. Laurent Gardes & Stéphane Girard, 2021. "On the estimation of the variability in the distribution tail," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(4), pages 884-907, December.
    3. Daouia, Abdelaati & Girard, Stéphane & Stupfler, Gilles, 2021. "ExpectHill estimation, extreme risk and heavy tails," Journal of Econometrics, Elsevier, vol. 221(1), pages 97-117.
    4. Girard, Stéphane & Stupfler, Gilles & Usseglio-Carleve, Antoine, 2022. "Functional estimation of extreme conditional expectiles," Econometrics and Statistics, Elsevier, vol. 21(C), pages 131-158.
    5. Chuancun Yin & Dan Zhu, 2015. "New class of distortion risk measures and their tail asymptotics with emphasis on VaR," Papers 1503.08586, arXiv.org, revised Mar 2016.
    6. Wächter, Hans Peter & Mazzoni, Thomas, 2013. "Consistent modeling of risk averse behavior with spectral risk measures," European Journal of Operational Research, Elsevier, vol. 229(2), pages 487-495.
    7. James Ming Chen, 2018. "On Exactitude in Financial Regulation: Value-at-Risk, Expected Shortfall, and Expectiles," Risks, MDPI, vol. 6(2), pages 1-28, June.
    8. Pflug Georg Ch., 2006. "On distortion functionals," Statistics & Risk Modeling, De Gruyter, vol. 24(1/2006), pages 1-16, July.
    9. Abbas, Yasser & Daouia, Abdelaati & Nemouchi, Boutheina & Stupfler, Gilles, 2025. "Tail expectile-VaR estimation in the semiparametric Generalized Pareto model," TSE Working Papers 25-1607, Toulouse School of Economics (TSE).
    10. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    11. Matthias Fischer & Thorsten Moser & Marius Pfeuffer, 2018. "A Discussion on Recent Risk Measures with Application to Credit Risk: Calculating Risk Contributions and Identifying Risk Concentrations," Risks, MDPI, vol. 6(4), pages 1-28, December.
    12. Wei Wang & Huifu Xu, 2023. "Preference robust state-dependent distortion risk measure on act space and its application in optimal decision making," Computational Management Science, Springer, vol. 20(1), pages 1-51, December.
    13. Soren Bettels & Stefan Weber, 2024. "An Integrated Approach to Importance Sampling and Machine Learning for Efficient Monte Carlo Estimation of Distortion Risk Measures in Black Box Models," Papers 2408.02401, arXiv.org, revised Aug 2025.
    14. Andreas H Hamel, 2018. "Monetary Measures of Risk," Papers 1812.04354, arXiv.org.
    15. Steven Kou & Xianhua Peng, 2014. "On the Measurement of Economic Tail Risk," Papers 1401.4787, arXiv.org, revised Aug 2015.
    16. Dilip B. Madan, 2016. "Conic Portfolio Theory," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(03), pages 1-42, May.
    17. Yuxin Du & Dejian Tian & Hui Zhang, 2025. "Robust distortion risk measures with linear penalty under distribution uncertainty," Papers 2503.15824, arXiv.org.
    18. Anand Deo, 2025. "EVT-Based Rate-Preserving Distributional Robustness for Tail Risk Functionals," Papers 2506.16230, arXiv.org, revised Jan 2026.
    19. Brandtner, Mario & Kürsten, Wolfgang, 2014. "Decision making with Conditional Value-at-Risk and spectral risk measures: The problem of comparative risk aversion," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100615, Verein für Socialpolitik / German Economic Association.
    20. Steven Kou & Xianhua Peng, 2016. "On the Measurement of Economic Tail Risk," Operations Research, INFORMS, vol. 64(5), pages 1056-1072, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecosta:v:35:y:2025:i:c:p:84-100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/econometrics-and-statistics .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.