IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v251y2025ics0304407625001381.html
   My bibliography  Save this article

Identification and inference for semiparametric single index transformation models

Author

Listed:
  • Lin, Yingqian
  • Tu, Yundong

Abstract

This paper considers a semiparametric single index model in which the dependent variable is subject to a nonparametric transformation. The model has the form G0(Y)=g0(X⊤θ0)+e, where X is a random vector of regressors, Y is the dependent variable and e is the random noise, the monotonic function G0, the smooth function g0 and the index vector θ0 are all unknown. This model is quite general in the sense that it nests many popular regression models as special cases. We first propose identification strategies for the three unknown quantities, based on which estimators are then constructed. The kernel density weighted average derivative estimator of δ (proportional to θ0) has a V-statistic representation and its asymptotical normality is established under the small bandwidth asymptotics. The kernel estimator of the transformation function G0 is a functional of the conditional distribution estimator of Y given X⊤θ0 and is shown to be n-consistent and asymptotically normal. The sieve estimator of g0 is shown to enjoy the standard nonparametric asymptotic properties. A specification test for the single index structure and extension to allow for endogeneous regressors are also developed. In addition, data-driven choices of the smoothing parameters are discussed. Simulation results illustrate the nice finite sample performance of the proposed estimators and specification test. An empirical application to studying the impact of family income on child achievement demonstrates the practical merits of the proposed model.

Suggested Citation

  • Lin, Yingqian & Tu, Yundong, 2025. "Identification and inference for semiparametric single index transformation models," Journal of Econometrics, Elsevier, vol. 251(C).
  • Handle: RePEc:eee:econom:v:251:y:2025:i:c:s0304407625001381
    DOI: 10.1016/j.jeconom.2025.106084
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407625001381
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2025.106084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:251:y:2025:i:c:s0304407625001381. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.