IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Noise space decomposition method for two-dimensional sinusoidal model

Listed author(s):
  • Nandi, Swagata
  • Kundu, Debasis
  • Srivastava, Rajesh Kumar
Registered author(s):

    The estimation of the parameters of the two-dimensional sinusoidal signal model has been addressed. The proposed method is the two-dimensional extension of the one-dimensional noise space decomposition method. It provides consistent estimators of the unknown parameters and they are non-iterative in nature. Two pairing algorithms, which help in identifying the frequency pairs have been proposed. It is observed that the mean squared errors of the proposed estimators are quite close to the asymptotic variance of the least squares estimators. For illustrative purposes two data sets have been analyzed, and it is observed that the proposed model and the method work quite well for analyzing real symmetric textures.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

    Volume (Year): 58 (2013)
    Issue (Month): C ()
    Pages: 147-161

    in new window

    Handle: RePEc:eee:csdana:v:58:y:2013:i:c:p:147-161
    DOI: 10.1016/j.csda.2011.03.002
    Contact details of provider: Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Bansal, Naveen K. & Hamedani, G. G. & Zhang, Hao, 1999. "Non-linear regression with multidimensional indices," Statistics & Probability Letters, Elsevier, vol. 45(2), pages 175-186, November.
    2. Kundu, Debasis, 1994. "Estimating the parameters of complex-valued exponential signals," Computational Statistics & Data Analysis, Elsevier, vol. 18(5), pages 525-534, December.
    3. Mitra, Amit & Kundu, Debasis & Agrawal, Gunjan, 2006. "Frequency estimation of undamped exponential signals using genetic algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1965-1985, December.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:58:y:2013:i:c:p:147-161. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.