IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Dissimilarity measures and divisive clustering for symbolic multimodal-valued data

Listed author(s):
  • Kim, Jaejik
  • Billard, L.
Registered author(s):

    Nowadays, most government agencies and local authorities regularly and routinely collect a large amount of data from censuses and surveys and officially publish them for public purposes. The most frequently used form for the publication is as statistical tables and it is usually not possible to access the raw data for those tables due to privacy issues. Under these situations, we have to analyze data using only those aggregated tables. These tables typically have formats summarized by ordinal or nominal items. Tables for quantitative variables have histogram-valued formats and those for qualitative variables are represented by multimodal-valued types. Both are classes of the so-called symbolic data. In this study, we propose dissimilarity measures and a divisive clustering algorithm for symbolic multimodal-valued data. In order to split a partition efficiently at each stage, the algorithm extends the monothetic method for binary data. The proposed method is verified by simulation studies and applied to a work-related nonfatal injury and illness dataset.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

    Volume (Year): 56 (2012)
    Issue (Month): 9 ()
    Pages: 2795-2808

    in new window

    Handle: RePEc:eee:csdana:v:56:y:2012:i:9:p:2795-2808
    DOI: 10.1016/j.csda.2012.03.001
    Contact details of provider: Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Kim, Jaejik & Billard, L., 2011. "A polythetic clustering process and cluster validity indexes for histogram-valued objects," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2250-2262, July.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:9:p:2795-2808. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.