IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i7p2183-2205.html
   My bibliography  Save this article

The Bayesian method for causal discovery of latent-variable models from a mixture of experimental and observational data

Author

Listed:
  • Yoo, Changwon

Abstract

This paper describes a Bayesian method for learning causal Bayesian networks through networks that contain latent variables from an arbitrary mixture of observational and experimental data. The paper presents Bayesian methods (including a new method) for learning the causal structure and parameters of the underlying causal process that is generating the data, given that the data contain a mixture of observational and experimental cases. These learning methods were applied using as input various mixtures of experimental and observational data that were generated from the ALARM causal Bayesian network. The paper reports how these structure predictions and parameter estimates compare with the true causal structures and parameters as given by the ALARM network. The paper shows that (1) the new method for learning Bayesian network structure from a mixture of data that this paper introduce, the Gibbs Volume method, best estimates the probability of the data, given the latent variable model and (2) using large data (>10,000 cases), another model, the implicit latent variable method, is asymptotically correct and efficient.

Suggested Citation

  • Yoo, Changwon, 2012. "The Bayesian method for causal discovery of latent-variable models from a mixture of experimental and observational data," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2183-2205.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:7:p:2183-2205
    DOI: 10.1016/j.csda.2012.01.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947312000291
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liang, Faming & Zhang, Jian, 2009. "Learning Bayesian networks for discrete data," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 865-876, February.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:7:p:2183-2205. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.