IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Global hypothesis test to simultaneously compare the predictive values of two binary diagnostic tests

Listed author(s):
  • Roldán Nofuentes, José Antonio
  • Luna del Castillo, Juan de Dios
  • Montero Alonso, Miguel Ángel
Registered author(s):

    The positive and negative predictive values of a binary diagnostic test are measures of the clinical accuracy of the diagnostic test, which depend on the sensitivity and specificity of the diagnostic test and the disease prevalence, and therefore they are two interdependent parameters. The comparisons of predictive values in paired designs do not consider the dependence between predictive values. A global hypothesis test has been studied in order to simultaneously compare the predictive values of two or more binary diagnostic tests when the binary tests and the gold standard are applied to all of the individuals in a random sample. This global hypothesis test is an asymptotic hypothesis test based on the chi-square distribution. Simulation experiments have been carried out in order to study the type I error and the power of the global hypothesis test when comparing the predictive values of two and three binary diagnostic tests, respectively. From the results of the simulation experiments, a method has been proposed to simultaneously compare the predictive values of two or more binary diagnostic tests. The results have been applied to the diagnosis of coronary disease.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

    Volume (Year): 56 (2012)
    Issue (Month): 5 ()
    Pages: 1161-1173

    in new window

    Handle: RePEc:eee:csdana:v:56:y:2012:i:5:p:1161-1173
    DOI: 10.1016/j.csda.2011.06.003
    Contact details of provider: Web page:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:5:p:1161-1173. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.