IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v213y2026ics0167947325001434.html
   My bibliography  Save this article

Discovering causal structures in corrupted data: frugality in anchored Gaussian DAG models

Author

Listed:
  • Shin, Joonho
  • Chung, Junhyoung
  • Hwang, Seyong
  • Park, Gunwoong

Abstract

This study focuses on the recovery of anchored Gaussian directed acyclic graphical (DAG) models to address the challenge of discovering causal or directed relationships among variables in datasets that are either intentionally masked or contaminated due to measurement errors. A main contribution is to relax the existing restrictive identifiability conditions for anchored Gaussian DAG models by introducing the anchored-frugality assumption. This assumption posits that the true graph is the most frugal among those satisfying the possible distributions of the latent and observed variables, thereby making the true Markov equivalent class (MEC) identifiable. The validity of the anchored-frugality assumption is justified using both graph and probability theories, respectively. Another main contribution is the development of the anchored-SP and frugal-PC algorithms. Specifically, the anchored-SP algorithm finds the most frugal graph among all possible graphs satisfying the Markov condition while the frugal-PC algorithm finds the most frugal graph among some graphs. Hence, the frugal-PC algorithm is more computationally feasible, while it requires an additional frugality-faithfulness assumption for soundness. Various simulations support the theoretical findings of this study and demonstrate the practical effectiveness of the proposed algorithm against state-of-the-art algorithms such as ACI, PC, and MMHC. Furthermore, the applications of the proposed algorithm to protein signaling data and breast cancer data illustrate its effectiveness in uncovering relationships among proteins and among cancer-related cell nuclei characteristics.

Suggested Citation

  • Shin, Joonho & Chung, Junhyoung & Hwang, Seyong & Park, Gunwoong, 2026. "Discovering causal structures in corrupted data: frugality in anchored Gaussian DAG models," Computational Statistics & Data Analysis, Elsevier, vol. 213(C).
  • Handle: RePEc:eee:csdana:v:213:y:2026:i:c:s0167947325001434
    DOI: 10.1016/j.csda.2025.108267
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947325001434
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2025.108267?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:213:y:2026:i:c:s0167947325001434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.