IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v213y2026ics0167947325001343.html
   My bibliography  Save this article

Empirical likelihood based Bayesian variable selection

Author

Listed:
  • Cheng, Yichen
  • Zhao, Yichuan

Abstract

Empirical likelihood is a popular nonparametric statistical tool that does not require any distributional assumptions. The possibility of conducting variable selection via Bayesian empirical likelihood is studied both theoretically and empirically. Theoretically, it is shown that when the prior distribution satisfies certain mild conditions, the corresponding Bayesian empirical likelihood estimators are posteriorly consistent and variable selection consistent. As special cases, the prior of Bayesian empirical likelihood LASSO and SCAD satisfy such conditions and thus can identify the non-zero elements of the parameters with probability approaching 1. In addition, it is easy to verify that those conditions are met for other widely used priors such as ridge, elastic net and adaptive LASSO. Empirical likelihood depends on a parameter that needs to be obtained by numerically solving a non-linear equation. Thus, there exists no conjugate prior for the posterior distribution, which causes the slow convergence of the MCMC sampling algorithm in some cases. To solve this problem, an approximation distribution is used as the proposal to enhance the acceptance rate and, therefore, facilitate faster computation. The computational results demonstrate quick convergence for the examples used in the paper. Both simulations and real data analyses are performed to illustrate the advantages of the proposed methods.

Suggested Citation

  • Cheng, Yichen & Zhao, Yichuan, 2026. "Empirical likelihood based Bayesian variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 213(C).
  • Handle: RePEc:eee:csdana:v:213:y:2026:i:c:s0167947325001343
    DOI: 10.1016/j.csda.2025.108258
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947325001343
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2025.108258?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:213:y:2026:i:c:s0167947325001343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.