IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v213y2026ics0167947325001288.html
   My bibliography  Save this article

GMM estimation of fixed effects partially linear additive SAR model with space-time correlated disturbances

Author

Listed:
  • Li, Bogui
  • Chen, Jianbao

Abstract

In order to study the ubiquitous space-time panel data in real world, a fixed effects partially linear additive spatial autoregressive (SAR) model with space-time correlated disturbances is proposed. Compared to the linear panel model with space-time correlated disturbances, it can simultaneously capture substantial spatial dependence of response, linearity and nonlinearity between response and regressors, spatial and serial correlations of disturbances, and avoid “curse of dimensionality” of nonparametric regression. By using B-splines to fit additive components and constructing linear and quadratic moment conditions which incorporate information in disturbances, the generalized method of moments (GMM) estimators of unknown parameters and additive components are obtained. Under certain regularity assumptions, it is proved that the GMM estimators are consistent and asymptotically normal. Furthermore, the asymptotically efficient best GMM estimators under normality are derived. Monte Carlo simulation and empirical analysis illustrate that the developed estimation method has good finite sample performance and application prospects.

Suggested Citation

  • Li, Bogui & Chen, Jianbao, 2026. "GMM estimation of fixed effects partially linear additive SAR model with space-time correlated disturbances," Computational Statistics & Data Analysis, Elsevier, vol. 213(C).
  • Handle: RePEc:eee:csdana:v:213:y:2026:i:c:s0167947325001288
    DOI: 10.1016/j.csda.2025.108252
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947325001288
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2025.108252?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:213:y:2026:i:c:s0167947325001288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.