Author
Listed:
- Framba, Matteo
- Vinciotti, Veronica
- Wit, Ernst C.
Abstract
Parameter estimation of kinetic rates in stochastic quasi-reaction systems can be challenging, particularly when the time gap between consecutive measurements is large. Local linear approximation approaches account for the stochasticity in the system but fail to capture the intrinsically nonlinear nature of the mean dynamics of the process. Moreover, the mean dynamics of a quasi-reaction system can be described by a system of ODEs, which have an explicit solution only for simple unitary systems. An approximate analytical solution is derived for generic quasi-reaction systems via a first-order Taylor approximation of the hazard rate. This allows a nonlinear forward prediction of the future dynamics given the current state of the system. Predictions and corresponding observations are embedded in a nonlinear least-squares approach for parameter estimation. The performance of the algorithm is compared to existing methods via a simulation study. Besides the generality of the approach in the specification of the quasi-reaction system and the gains in computational efficiency, the results show an improvement in the kinetic rate estimation, particularly for data observed at large time intervals. Additionally, the availability of an explicit solution makes the method robust to stiffness, which is often present in biological systems. Application to Rhesus Macaque data illustrates the use of the method in the study of cell differentiation.
Suggested Citation
Framba, Matteo & Vinciotti, Veronica & Wit, Ernst C., 2026.
"Inferring the dynamics of quasi-reaction systems via nonlinear local mean-field approximations,"
Computational Statistics & Data Analysis, Elsevier, vol. 213(C).
Handle:
RePEc:eee:csdana:v:213:y:2026:i:c:s0167947325001276
DOI: 10.1016/j.csda.2025.108251
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:213:y:2026:i:c:s0167947325001276. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.