IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v212y2025ics0167947325001215.html
   My bibliography  Save this article

Testing the equality of high dimensional distributions

Author

Listed:
  • Modarres, Reza

Abstract

The Euclidean distance is not a suitable distance for high dimensional settings due to the distance concentration phenomenon. A novel statistic that is inspired by the interpoint distances, but avoids their computation, is proposed for comparing and visualizing high dimensional datasets. The new statistic is based on a high dimensional dissimilarity index that takes advantage of the concentration phenomenon. A simultaneous display of observations means and standard deviations that aids visualization, detection of suspect outliers, and enhances separability among the competing classes in the transformed space is discussed. The finite sample convergence of the dissimilarity indices is studied, nine statistics are compared under several distributions, and three applications are presented.

Suggested Citation

  • Modarres, Reza, 2025. "Testing the equality of high dimensional distributions," Computational Statistics & Data Analysis, Elsevier, vol. 212(C).
  • Handle: RePEc:eee:csdana:v:212:y:2025:i:c:s0167947325001215
    DOI: 10.1016/j.csda.2025.108245
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947325001215
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2025.108245?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:212:y:2025:i:c:s0167947325001215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.