IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v212y2025ics0167947325001100.html
   My bibliography  Save this article

Joint estimation of precision matrices for long-memory time series

Author

Listed:
  • Zhang, Qihu
  • Chung, Jongik
  • Park, Cheolwoo

Abstract

Methods are proposed for estimating multiple precision matrices for long-memory time series, with particular emphasis on the analysis of resting-state functional magnetic resonance imaging (fMRI) data obtained from multiple subjects. The objective is to estimate both individual brain networks and a common structure representative of a group. Several approaches employing weighted aggregation are introduced to simultaneously estimate individual and group-level precision matrices. Convergence rates of the estimators are examined under various norms and expectations, and their performance is evaluated under both sub-Gaussian and heavy-tailed distributions. The proposed methods are demonstrated through simulated data and real resting-state fMRI datasets.

Suggested Citation

  • Zhang, Qihu & Chung, Jongik & Park, Cheolwoo, 2025. "Joint estimation of precision matrices for long-memory time series," Computational Statistics & Data Analysis, Elsevier, vol. 212(C).
  • Handle: RePEc:eee:csdana:v:212:y:2025:i:c:s0167947325001100
    DOI: 10.1016/j.csda.2025.108234
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947325001100
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2025.108234?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:212:y:2025:i:c:s0167947325001100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.