IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v211y2025ics0167947325001057.html
   My bibliography  Save this article

Flexible modeling of left-truncated and interval-censored competing risks data with missing event types

Author

Listed:
  • Lou, Yichen
  • Ma, Yuqing
  • Xiang, Liming
  • Sun, Jianguo

Abstract

Interval-censored competing risks data arise in many cohort studies in clinical research, where multiple types of events subject to interval censoring are included and the occurrence of the primary event of interest may be censored by the occurrence of other events. The presence of missing event types and left truncation poses challenges to the regression analysis of such data. We propose a new two-stage estimation procedure under a class of semiparametric generalized odds rate transformation models to overcome these challenges. Our method first facilitates the estimation of both the probability of response and the probability of occurrence of each type of event under the missing at random assumption, using either parametric or non-parametric methods. An augmented inverse probability weighting likelihood based on the complete-case likelihood and data from subjects with missing type of event is then maximized for estimating regression parameters. We provide desirable asymptotic properties and construct a concordance index to evaluate the model's discriminative ability. The proposed method is demonstrated through extensive simulations and the analysis of data from the Amsterdam cohort study on HIV infection and AIDS.

Suggested Citation

  • Lou, Yichen & Ma, Yuqing & Xiang, Liming & Sun, Jianguo, 2025. "Flexible modeling of left-truncated and interval-censored competing risks data with missing event types," Computational Statistics & Data Analysis, Elsevier, vol. 211(C).
  • Handle: RePEc:eee:csdana:v:211:y:2025:i:c:s0167947325001057
    DOI: 10.1016/j.csda.2025.108229
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947325001057
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2025.108229?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:211:y:2025:i:c:s0167947325001057. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.