IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v211y2025ics0167947325001045.html
   My bibliography  Save this article

JANE: Just Another latent space NEtwork clustering algorithm

Author

Listed:
  • Arakkal, Alan T.
  • Sewell, Daniel K.

Abstract

While latent space network models have been a popular approach for community detection for over 15 years, major computational challenges remain, limiting the ability to scale beyond small networks. The R statistical software package, JANE, introduces a new estimation algorithm with massive speedups derived from: (1) a low dimensional approximation approach to adjust for degree heterogeneity parameters; (2) an approximation of intractable likelihood terms; (3) a fast initialization algorithm; and (4) a novel set of convergence criteria focused on clustering performance. Additionally, the proposed method addresses limitations of current implementations, which rely on a restrictive spherical-shape assumption for the prior distribution on the latent positions; relaxing this constraint allows for greater flexibility across diverse network structures. A simulation study evaluating clustering performance of the proposed approach against state-of-the-art methods shows dramatically improved clustering performance in most scenarios and significant reductions in computational time — up to 45 times faster compared to existing approaches.

Suggested Citation

  • Arakkal, Alan T. & Sewell, Daniel K., 2025. "JANE: Just Another latent space NEtwork clustering algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 211(C).
  • Handle: RePEc:eee:csdana:v:211:y:2025:i:c:s0167947325001045
    DOI: 10.1016/j.csda.2025.108228
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947325001045
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2025.108228?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:211:y:2025:i:c:s0167947325001045. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.