IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v211y2025ics0167947325000945.html
   My bibliography  Save this article

Small area prediction of counts under machine learning-type mixed models

Author

Listed:
  • Frink, Nicolas
  • Schmid, Timo

Abstract

Small area estimation methods are proposed that use generalized tree-based machine learning techniques to improve the estimation of disaggregated means in small areas using discrete survey data. Specifically, two existing approaches based on random forests - the Generalized Mixed Effects Random Forest (GMERF) and a Mixed Effects Random Forest (MERF) - are extended to accommodate count outcomes, addressing key challenges such as overdispersion. Additionally, three bootstrap methodologies designed to assess the reliability of point estimators for area-level means are evaluated. The numerical analysis shows that the MERF, which does not assume a Poisson distribution to model the mean behavior of count data, excels in scenarios of severe overdispersion. Conversely, the GMERF performs best under conditions where Poisson distribution assumptions are moderately met. In a case study using real-world data from the state of Guerrero, Mexico, the proposed methods effectively estimate area-level means while capturing the uncertainty inherent in overdispersed count data. These findings highlight their practical applicability for small area estimation.

Suggested Citation

  • Frink, Nicolas & Schmid, Timo, 2025. "Small area prediction of counts under machine learning-type mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 211(C).
  • Handle: RePEc:eee:csdana:v:211:y:2025:i:c:s0167947325000945
    DOI: 10.1016/j.csda.2025.108218
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947325000945
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2025.108218?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:211:y:2025:i:c:s0167947325000945. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.