IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v211y2025ics0167947325000830.html
   My bibliography  Save this article

Exact statistical analysis for response-adaptive clinical trials: A general and computationally tractable approach

Author

Listed:
  • Baas, Stef
  • Jacko, Peter
  • Villar, Sofía S.

Abstract

Response-adaptive clinical trial designs allow targeting a given objective by skewing the allocation of participants to treatments based on observed outcomes. Response-adaptive designs face greater regulatory scrutiny due to potential type I error rate inflation, which limits their uptake in practice. Existing approaches for type I error control either only work for specific designs, have a risk of Monte Carlo/approximation error, are conservative, or computationally intractable. To this end, a general and computationally tractable approach is developed for exact analysis in two-arm response-adaptive designs with binary outcomes. This approach can construct exact tests for designs using either a randomized or deterministic response-adaptive procedure. The constructed conditional and unconditional exact tests generalize Fisher's and Barnard's exact tests, respectively. Furthermore, the approach allows for complexities such as delayed outcomes, early stopping, or allocation of participants in blocks. The efficient implementation of forward recursion allows for testing of two-arm trials with 1,000 participants on a standard computer. Through an illustrative computational study of trials using randomized dynamic programming it is shown that, contrary to what is known for equal allocation, the conditional exact Wald test based on total successes has, almost uniformly, higher power than the unconditional exact Wald test. Two real-world trials with the above-mentioned complexities are re-analyzed to demonstrate the value of the new approach in controlling type I errors and/or improving the statistical power.

Suggested Citation

  • Baas, Stef & Jacko, Peter & Villar, Sofía S., 2025. "Exact statistical analysis for response-adaptive clinical trials: A general and computationally tractable approach," Computational Statistics & Data Analysis, Elsevier, vol. 211(C).
  • Handle: RePEc:eee:csdana:v:211:y:2025:i:c:s0167947325000830
    DOI: 10.1016/j.csda.2025.108207
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947325000830
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2025.108207?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:211:y:2025:i:c:s0167947325000830. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.