IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v211y2025ics0167947325000805.html
   My bibliography  Save this article

A Dirichlet stochastic block model for composition-weighted networks

Author

Listed:
  • Promskaia, Iuliia
  • O'Hagan, Adrian
  • Fop, Michael

Abstract

Network data are prevalent in applications where individual entities interact with each other, and often these interactions have associated weights representing the strength of association. Clustering such weighted network data is a common task, which involves identifying groups of nodes that display similarities in the way they interact. However, traditional clustering methods typically use edge weights in their raw form, overlooking that the observed weights are influenced by the nodes' capacities to distribute weights along the edges. This can lead to clustering results that primarily reflect nodes' total weight capacities rather than the specific interactions between them. One way to address this issue is to analyse the strengths of connections in relative rather than absolute terms, by transforming the relational weights into a compositional format. This approach expresses each edge weight as a proportion of the sending or receiving weight capacity of the respective node. To cluster these data, a Dirichlet stochastic block model tailored for composition-weighted networks is proposed. The model relies on direct modelling of compositional weight vectors using a Dirichlet mixture, where parameters are determined by the cluster labels of sender and receiver nodes. Inference is implemented via an extension of the classification expectation-maximisation algorithm, expressing the complete data likelihood of each node as a function of fixed cluster labels of the remaining nodes. A model selection criterion is derived to determine the optimal number of clusters. The proposed approach is validated through simulation studies, and its practical utility is illustrated on two real-world networks.

Suggested Citation

  • Promskaia, Iuliia & O'Hagan, Adrian & Fop, Michael, 2025. "A Dirichlet stochastic block model for composition-weighted networks," Computational Statistics & Data Analysis, Elsevier, vol. 211(C).
  • Handle: RePEc:eee:csdana:v:211:y:2025:i:c:s0167947325000805
    DOI: 10.1016/j.csda.2025.108204
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947325000805
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2025.108204?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:211:y:2025:i:c:s0167947325000805. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.