IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v209y2025ics0167947325000441.html
   My bibliography  Save this article

Manifold-valued models for analysis of EEG time series data

Author

Listed:
  • Ding, Tao
  • Nye, Tom M.W.
  • Wang, Yujiang

Abstract

EEG (electroencephalogram) records brain electrical activity and is a vital clinical tool in the diagnosis and treatment of epilepsy. Time series of covariance matrices between EEG channels for patients suffering from epilepsy, obtained from an open-source dataset, are analysed. The aim is two-fold: to develop a model with interpretable parameters for different possible modes of EEG dynamics, and to explore the extent to which modelling results are affected by the choice of geometry imposed on the space of covariance matrices. The space of full-rank covariance matrices of fixed dimension forms a smooth manifold, and any statistical analysis inherently depends on the choice of metric or Riemannian structure on this manifold. The model specifies a distribution for the tangent direction vector at any time point, combining an autoregressive term, a mean reverting term and a form of Gaussian noise. Parameter inference is performed by maximum likelihood estimation, and we compare modelling results obtained using the standard Euclidean geometry and the affine invariant geometry on covariance matrices. The findings reveal distinct dynamics between epileptic seizures and interictal periods (between seizures), with interictal series characterized by strong mean reversion and absence of autoregression, while seizures exhibit significant autoregressive components with weaker mean reversion. The fitted models are also used to measure seizure dissimilarity within and between patients.

Suggested Citation

  • Ding, Tao & Nye, Tom M.W. & Wang, Yujiang, 2025. "Manifold-valued models for analysis of EEG time series data," Computational Statistics & Data Analysis, Elsevier, vol. 209(C).
  • Handle: RePEc:eee:csdana:v:209:y:2025:i:c:s0167947325000441
    DOI: 10.1016/j.csda.2025.108168
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947325000441
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2025.108168?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Kwang‐Rae Kim & Ian L. Dryden & Huiling Le & Katie E. Severn, 2021. "Smoothing splines on Riemannian manifolds, with applications to 3D shape space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(1), pages 108-132, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. García-Morales, Vladimir, 2021. "A constructive theory of shape," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. Valerio Varano & Stefano Gabriele & Franco Milicchio & Stefan Shlager & Ian Dryden & Paolo Piras, 2022. "Geodesics in the TPS Space," Mathematics, MDPI, vol. 10(9), pages 1-20, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:209:y:2025:i:c:s0167947325000441. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.