IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v139y2019icp75-81.html
   My bibliography  Save this article

Numerical evaluation of methods approximating the distribution of a large quadratic form in normal variables

Author

Listed:
  • Chen, Tong
  • Lumley, Thomas

Abstract

Quadratic forms of Gaussian variables occur in a wide range of applications in statistics. They can be expressed as a linear combination of chi-squareds. The coefficients in the linear combination are the eigenvalues λ1,…,λn of ΣA, where A is the matrix representing the quadratic form and Σ is the covariance matrix of the Gaussians. The previous literature mostly deals with approximations for small quadratic forms (n<10) and moderate p-values (p>10−2). Motivated by genetic applications, moderate to large quadratic forms (300

Suggested Citation

  • Chen, Tong & Lumley, Thomas, 2019. "Numerical evaluation of methods approximating the distribution of a large quadratic form in normal variables," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 75-81.
  • Handle: RePEc:eee:csdana:v:139:y:2019:i:c:p:75-81
    DOI: 10.1016/j.csda.2019.05.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947319301136
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2019.05.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duchesne, Pierre & Lafaye De Micheaux, Pierre, 2010. "Computing the distribution of quadratic forms: Further comparisons between the Liu-Tang-Zhang approximation and exact methods," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 858-862, April.
    2. R. W. Farebrother, 1984. "The Distribution of a Positive Linear Combination of X2 Random Variables," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 33(3), pages 332-339, November.
    3. Robert B. Davies, 1980. "The Distribution of a Linear Combination of χ2 Random Variables," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 29(3), pages 323-333, November.
    4. Liu, Huan & Tang, Yongqiang & Zhang, Hao Helen, 2009. "A new chi-square approximation to the distribution of non-negative definite quadratic forms in non-central normal variables," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 853-856, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duchesne, Pierre & Lafaye De Micheaux, Pierre, 2010. "Computing the distribution of quadratic forms: Further comparisons between the Liu-Tang-Zhang approximation and exact methods," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 858-862, April.
    2. Pötscher, Benedikt M. & Preinerstorfer, David, 2021. "Valid Heteroskedasticity Robust Testing," MPRA Paper 117855, University Library of Munich, Germany, revised Jul 2023.
    3. Peng, Qidi & Schellhorn, Henry, 2018. "On the distribution of extended CIR model," Statistics & Probability Letters, Elsevier, vol. 142(C), pages 23-29.
    4. David Lamparter & Daniel Marbach & Rico Rueedi & Zoltán Kutalik & Sven Bergmann, 2016. "Fast and Rigorous Computation of Gene and Pathway Scores from SNP-Based Summary Statistics," PLOS Computational Biology, Public Library of Science, vol. 12(1), pages 1-20, January.
    5. Sanae Rujivan & Athinan Sutchada & Kittisak Chumpong & Napat Rujeerapaiboon, 2023. "Analytically Computing the Moments of a Conic Combination of Independent Noncentral Chi-Square Random Variables and Its Application for the Extended Cox–Ingersoll–Ross Process with Time-Varying Dimens," Mathematics, MDPI, vol. 11(5), pages 1-29, March.
    6. Saralees Nadarajah & Samuel Kotz, 2007. "On the Linear Combination of Laplace and Logistic Random Variables," Journal of Applied Statistics, Taylor & Francis Journals, vol. 34(2), pages 185-194.
    7. Marco Riani & Andrea Cerioli & Domenico Perrotta & Francesca Torti, 2015. "Simulating mixtures of multivariate data with fixed cluster overlap in FSDA library," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(4), pages 461-481, December.
    8. Seri, Raffaello, 2022. "Computing the asymptotic distribution of second-order U- and V-statistics," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    9. Wolfgang Kössler & Hans-J. Lenz & Xing D. Wang, 2024. "Some new invariant sum tests and MAD tests for the assessment of Benford’s law," Computational Statistics, Springer, vol. 39(7), pages 3779-3800, December.
    10. Escanciano, Juan Carlos & Jacho-Chávez, David T., 2010. "Approximating the critical values of Cramér-von Mises tests in general parametric conditional specifications," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 625-636, March.
    11. Ghiglietti, Andrea & Paganoni, Anna Maria, 2017. "Exact tests for the means of Gaussian stochastic processes," Statistics & Probability Letters, Elsevier, vol. 131(C), pages 102-107.
    12. Nicolas Städler & Sach Mukherjee, 2017. "Two-sample testing in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 225-246, January.
    13. Mahmood Kharrati-Kopaei, 2021. "On the exact distribution of the likelihood ratio test statistic for testing the homogeneity of the scale parameters of several inverse Gaussian distributions," Computational Statistics, Springer, vol. 36(2), pages 1123-1138, June.
    14. Elodie Persyn & Richard Redon & Lise Bellanger & Christian Dina, 2018. "The impact of a fine-scale population stratification on rare variant association test results," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-17, December.
    15. A. Basu & A. Mandal & N. Martin & L. Pardo, 2018. "Testing Composite Hypothesis Based on the Density Power Divergence," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(2), pages 222-262, November.
    16. Liu, Huan & Tang, Yongqiang & Zhang, Hao Helen, 2009. "A new chi-square approximation to the distribution of non-negative definite quadratic forms in non-central normal variables," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 853-856, February.
    17. Xuemei Hu & Xiaohui Liu, 2013. "Empirical likelihood confidence regions for semi-varying coefficient models with linear process errors," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(1), pages 161-180, March.
    18. Yunxuan Jiang & Karen N. Conneely & Michael P. Epstein, 2018. "Robust Rare-Variant Association Tests for Quantitative Traits in General Pedigrees," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(3), pages 491-505, December.
    19. Andrea Cerasa, 2016. "Combining homogeneous groups of preclassified observations with application to international trade," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 70(3), pages 229-259, August.
    20. Yamaguchi, Hikaru & Murakami, Hidetoshi, 2023. "The multi-aspect tests in the presence of ties," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:139:y:2019:i:c:p:75-81. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.