IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v89y2016icp474-484.html
   My bibliography  Save this article

A novel complex air supply model for indoor air quality control via the occupant micro-environment demand ventilation

Author

Listed:
  • Yang, Jie
  • Zhou, Bo
  • Jin, Maozhu
  • Wang, Jun
  • Xiong, Feng

Abstract

Protection of indoor air quality and human health can be achieved via ventilation, which has becomes one of the most important tasks for sustainable buildings. This approach also requires highly efficient and energy saving methods for modern building ventilations consisting of a set of parameters of the complex indoor system. Therefore, the advancement in understanding the characteristics of various ventilation methods is highly necessary. This study presents one novel air supply model for the complex occupant micro-environment demand control ventilations, to analyze the efficiency of various ventilation types. This model is established primarily according to the momentum and mass conservations, and goal of occupant micro-environment demand, which is a complex system with the characteristics of diversity and dynamic variation. As for different occupant densities, characteristics of outdoor air supply for controlling gaseous pollutant and three basic features of outdoor airflow supply reaching occupant micro-environment were obtained. This research shows that for various types of occupant density and storey height, the rising and descending rates of the demand outdoor airflow in mixing ventilation are higher than those under displacement ventilation conditions. In addition, since the structure is better designed and sewage flow is more efficient, the mixing ventilation also requires a much higher peak demand outdoor airflow than its counterpart. The increase of storey height will lead to a decline of pollutants in the breathing zone and the demand outdoor airflow. Fluctuations of air flow diffusion caused by the change of occupant density in architectural space, will lead to variations of outdoor airflow reaching occupant micro-environment. Accordingly, it would lead to the different peak values of demand outdoor airflow, and the difference becomes even significant if the occupant density increases. The variations of the air supply and fraction of air reaching the occupant-breathing zone show the characteristics of a complex system. This research is meaningful for design and optimization of the complex indoor air environment in sustainable buildings.

Suggested Citation

  • Yang, Jie & Zhou, Bo & Jin, Maozhu & Wang, Jun & Xiong, Feng, 2016. "A novel complex air supply model for indoor air quality control via the occupant micro-environment demand ventilation," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 474-484.
  • Handle: RePEc:eee:chsofr:v:89:y:2016:i:c:p:474-484
    DOI: 10.1016/j.chaos.2016.02.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077916300455
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2016.02.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:89:y:2016:i:c:p:474-484. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.