IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v45y2012i4p402-415.html
   My bibliography  Save this article

Nonlinear quantum dynamics in diatomic molecules: Vibration, rotation and spin

Author

Listed:
  • Yang, Ciann-Dong
  • Weng, Hung-Jen

Abstract

For a given molecular wavefunction Ψ, the probability density function Ψ∗Ψ is not the only information that can be extracted from Ψ. We point out in this paper that nonlinear quantum dynamics of a diatomic molecule, completely consistent with the probability prediction of quantum mechanics, does exist and can be derived from the quantum Hamilton equations of motion determined by Ψ. It can be said that the probability density function Ψ∗Ψ is an external representation of the quantum state Ψ, while the related Hamilton dynamics is an internal representation of Ψ, which reveals the internal mechanism underlying the externally observed random events. The proposed internal representation of Ψ establishes a bridge between nonlinear dynamics and quantum mechanics, which allows the methods and tools already developed by the former to be applied to the latter. Based on the quantum Hamilton equations of motion derived from Ψ, vibration, rotation and spin motions of a diatomic molecule and the interactions between them can be analyzed simultaneously. The resulting dynamic analysis of molecular motion is compared with the conventional probability analysis and the consistency between them is demonstrated.

Suggested Citation

  • Yang, Ciann-Dong & Weng, Hung-Jen, 2012. "Nonlinear quantum dynamics in diatomic molecules: Vibration, rotation and spin," Chaos, Solitons & Fractals, Elsevier, vol. 45(4), pages 402-415.
  • Handle: RePEc:eee:chsofr:v:45:y:2012:i:4:p:402-415
    DOI: 10.1016/j.chaos.2012.01.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077912000264
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2012.01.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Ciann-Dong & Weng, Hung- Jen, 2008. "Complex dynamics in diatomic molecules. Part II: Quantum trajectories," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 16-35.
    2. Yang, Ciann-Dong, 2008. "Complex dynamics in diatomic molecules. Part I: Fine structure of internuclear potential," Chaos, Solitons & Fractals, Elsevier, vol. 37(4), pages 962-976.
    3. Yang, Ciann-Dong, 2007. "The origin and proof of quantization axiom p→pˆ=-iℏ∇ in complex spacetime," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 274-283.
    4. Yang, Ciann-Dong, 2007. "Complex tunneling dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 312-345.
    5. Yang, Ciann-Dong, 2009. "A new hydrodynamic formulation of complex-valued quantum mechanics," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 453-468.
    6. Yang, Ciann-Dong, 2009. "Stability and quantization of complex-valued nonlinear quantum systems," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 711-723.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Ciann-Dong, 2009. "Stability and quantization of complex-valued nonlinear quantum systems," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 711-723.
    2. Yang, Ciann-Dong, 2008. "On the existence of complex spacetime in relativistic quantum mechanics," Chaos, Solitons & Fractals, Elsevier, vol. 38(2), pages 316-331.
    3. Zeng, Xu & Li, Chuandong & Huang, Tingwen & He, Xing, 2015. "Stability analysis of complex-valued impulsive systems with time delay," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 75-82.
    4. Yang, Ciann-Dong, 2009. "Complex spin and anti-spin dynamics: A generalization of de Broglie–Bohm theory to complex space," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 317-333.
    5. Yang, Ciann-Dong & Wei, Chia-Hung, 2007. "Parameterization of all path integral trajectories," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 118-134.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:45:y:2012:i:4:p:402-415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.