IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v42y2009i2p951-963.html
   My bibliography  Save this article

Discrete dynamical modeling and analysis of the R–S flip-flop circuit

Author

Listed:
  • Blackmore, Denis
  • Rahman, Aminur
  • Shah, Jigar

Abstract

A simple discrete planar dynamical model for the ideal (logical) R–S flip-flop circuit is developed with an eye toward mimicking the dynamical behavior observed for actual physical realizations of this circuit. It is shown that the model exhibits most of the qualitative features ascribed to the R–S flip-flop circuit, such as an intrinsic instability associated with unit set and reset inputs, manifested in a chaotic sequence of output states that tend to oscillate among all possible output states, and the existence of periodic orbits of arbitrarily high period that depend on the various intrinsic system parameters. The investigation involves a combination of analytical methods from the modern theory of discrete dynamical systems, and numerical simulations that illustrate the dazzling array of dynamics that can be generated by the model. Validation of the discrete model is accomplished by comparison with certain Poincaré map like representations of the dynamics corresponding to three-dimensional differential equation models of electrical circuits that produce R–S flip-flop behavior.

Suggested Citation

  • Blackmore, Denis & Rahman, Aminur & Shah, Jigar, 2009. "Discrete dynamical modeling and analysis of the R–S flip-flop circuit," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 951-963.
  • Handle: RePEc:eee:chsofr:v:42:y:2009:i:2:p:951-963
    DOI: 10.1016/j.chaos.2009.02.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077909000903
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2009.02.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruzbehani, Mohsen & Zhou, Luowei & Wang, Mingyu, 2006. "Bifurcation diagram features of a dc–dc converter under current-mode control," Chaos, Solitons & Fractals, Elsevier, vol. 28(1), pages 205-212.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rahman, Aminur & Blackmore, Denis, 2016. "Neimark-Sacker bifurcations and evidence of chaos in a discrete dynamical model of walkers," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 339-349.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Hong & Zhang, Bo & Li, Zhong & Halang, Wolfgang A. & Chen, Guanrong, 2009. "Controlling DC–DC converters by chaos-based pulse width modulation to reduce EMI," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1378-1387.
    2. Miranda, Manuel & Alvarez, Joaquin, 2009. "Bifurcations and chaos produced by the modulation signal in a PWM buck converter," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2260-2271.
    3. Milicevic, K. & Pelin, D. & Flegar, I., 2008. "Measurement system for model verification of nonautonomous second-order nonlinear systems," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 939-948.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:42:y:2009:i:2:p:951-963. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.