IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v42y2009i2p1054-1061.html
   My bibliography  Save this article

Projective synchronization of chaotic time-delayed systems via sliding mode controller

Author

Listed:
  • Vasegh, Nastaran
  • Khellat, F.

Abstract

In this paper a new method for projective synchronization of hyperchaotic models with different parameters based on sliding mode is developed. By using Lyapunov stability theory the stability of error dynamics is guaranteed. The synchronizing method is then compared from various viewpoints. Moreover, effect of the differences in parameters values is also included in our discussion. Furthermore, message encoding is considered based on synchronization. Also, numerical simulations are given to show the effectiveness of the method.

Suggested Citation

  • Vasegh, Nastaran & Khellat, F., 2009. "Projective synchronization of chaotic time-delayed systems via sliding mode controller," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1054-1061.
  • Handle: RePEc:eee:chsofr:v:42:y:2009:i:2:p:1054-1061
    DOI: 10.1016/j.chaos.2009.02.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077909000940
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2009.02.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vasegh, Nastaran & Majd, Vahid Johari, 2009. "Fuzzy model-based adaptive synchronization of time-delayed chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1484-1492.
    2. Chee, Chin Yi & Xu, Daolin, 2005. "Secure digital communication using controlled projective synchronisation of chaos," Chaos, Solitons & Fractals, Elsevier, vol. 23(3), pages 1063-1070.
    3. Feng, Cun-Fang & Zhang, Yan & Sun, Jin-Tu & Qi, Wei & Wang, Ying-Hai, 2008. "Generalized projective synchronization in time-delayed chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 38(3), pages 743-747.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yao, Qijia, 2021. "Synchronization of second-order chaotic systems with uncertainties and disturbances using fixed-time adaptive sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    2. Yao, Qijia & Alsaade, Fawaz W. & Al-zahrani, Mohammed S. & Jahanshahi, Hadi, 2023. "Fixed-time neural control for output-constrained synchronization of second-order chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Banerjee, Santo, 2009. "Synchronization of time-delayed systems with chaotic modulation and cryptography," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 745-750.
    2. Zhang, Weiwei & Sha, Chunlin & Cao, Jinde & Wang, Guanglan & Wang, Yuan, 2021. "Adaptive quaternion projective synchronization of fractional order delayed neural networks in quaternion field," Applied Mathematics and Computation, Elsevier, vol. 400(C).
    3. Yao, Qijia & Alsaade, Fawaz W. & Al-zahrani, Mohammed S. & Jahanshahi, Hadi, 2023. "Fixed-time neural control for output-constrained synchronization of second-order chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    4. Sharma, Vivek & Sharma, B.B. & Nath, R., 2017. "Nonlinear unknown input sliding mode observer based chaotic system synchronization and message recovery scheme with uncertainty," Chaos, Solitons & Fractals, Elsevier, vol. 96(C), pages 51-58.
    5. Yao, Qijia, 2021. "Neural adaptive learning synchronization of second-order uncertain chaotic systems with prescribed performance guarantees," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    6. Peng, Qiu & Jian, Jigui, 2021. "Estimating the ultimate bounds and synchronization of fractional-order plasma chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    7. Hu, Hanping & Xu, Ya & Zhu, Ziqi, 2008. "A method of improving the properties of digital chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 38(2), pages 439-446.
    8. Wu, Xiangjun & Zhu, Changjiang & Kan, Haibin, 2015. "An improved secure communication scheme based passive synchronization of hyperchaotic complex nonlinear system," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 201-214.
    9. Wu, Xiang-Jun & Lu, Hong-Tao, 2011. "Adaptive generalized function projective lag synchronization of different chaotic systems with fully uncertain parameters," Chaos, Solitons & Fractals, Elsevier, vol. 44(10), pages 802-810.
    10. Wang, Huanqing & Ai, Yingdong, 2022. "Adaptive fixed-time control and synchronization for hyperchaotic Lü systems," Applied Mathematics and Computation, Elsevier, vol. 433(C).
    11. Wen, Guilin & Xu, Daolin, 2005. "Nonlinear observer control for full-state projective synchronization in chaotic continuous-time systems," Chaos, Solitons & Fractals, Elsevier, vol. 26(1), pages 71-77.
    12. Zhang, Xin & Li, Chunbiao & Chen, Yudi & IU, Herbert H.C. & Lei, Tengfei, 2020. "A memristive chaotic oscillator with controllable amplitude and frequency," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    13. Chu, Yan-Dong & Chang, Ying-Xiang & Zhang, Jian-Gang & Li, Xian-Feng & An, Xin-Lei, 2009. "Full state hybrid projective synchronization in hyperchaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1502-1510.
    14. Xiao, Jiang-Wen & Gao, Jiexuan & Huang, Yuehua & Wang, Yan-Wu, 2009. "Reduced-order adaptive control design for the stabilization and synchronization of a class of nonlinear chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1156-1162.
    15. Du, Hongyue & Zeng, Qingshuang & Wang, Changhong, 2009. "Modified function projective synchronization of chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2399-2404.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:42:y:2009:i:2:p:1054-1061. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.