IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v41y2009i5p2787-2789.html
   My bibliography  Save this article

Arguments for the compactness and multiple connectivity of our cosmic spacetime

Author

Listed:
  • El Naschie, M.S.

Abstract

Some global topological as well as quantative arguments are given, indicating that our universe is most probably compact, multiply connected and without boundaries. The analysis leading to this tentative conclusion is based on a combination of Nash Euclidean embedding theorems, the local isomorphism theorem, cosmic crystallography and the theory of fractal-Cantorian spacetime. It is shown that the correct topological dimension D=4 of space is derived from the Euclidean embedding of spacetime quanta when the corresponding manifold is assumed to be compact. This and other conclusions regarding multi-connectivity seems to reinforce the findings of relatively recent research results on topological cosmology by Luminet et al. (see Nature 425;9 Oct. 2003:593–95).

Suggested Citation

  • El Naschie, M.S., 2009. "Arguments for the compactness and multiple connectivity of our cosmic spacetime," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2787-2789.
  • Handle: RePEc:eee:chsofr:v:41:y:2009:i:5:p:2787-2789
    DOI: 10.1016/j.chaos.2008.10.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077908004803
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2008.10.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El Naschie, M.S., 2009. "An irreducibly simple derivation of the Hausdorff dimension of spacetime," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1902-1904.
    2. El Naschie, M.S., 2006. "Elementary prerequisites for E-infinity," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 579-605.
    3. El Naschie, M.S., 2008. "Exceptional Lie groups hierarchy and some fundamental high energy physics equations," Chaos, Solitons & Fractals, Elsevier, vol. 35(1), pages 82-84.
    4. El Naschie, M.S., 2009. "The crystallographic space groups and Heterotic string theory," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2282-2284.
    5. El Naschie, M.S., 2008. "High energy physics and the standard model from the exceptional Lie groups," Chaos, Solitons & Fractals, Elsevier, vol. 36(1), pages 1-17.
    6. El Naschie, M.S., 2008. "An outline for a quantum golden field theory," Chaos, Solitons & Fractals, Elsevier, vol. 37(2), pages 317-323.
    7. El Naschie, M.S., 2008. "Mathematical foundation of E-Infinity via Coxeter and reflection groups," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1267-1268.
    8. Marek-Crnjac, L., 2009. "A Feynman path integral-like method for deriving the four dimensionality of spacetime from first principles," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2471-2473.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohiuddine, S.A., 2009. "Stability of Jensen functional equation in intuitionistic fuzzy normed space," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2989-2996.
    2. Mursaleen, M. & Mohiuddine, S.A., 2009. "On stability of a cubic functional equation in intuitionistic fuzzy normed spaces," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2997-3005.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marek-Crnjac, L., 2008. "From Arthur Cayley via Felix Klein, Sophus Lie, Wilhelm Killing, Elie Cartan, Emmy Noether and superstrings to Cantorian space–time," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1279-1288.
    2. El Naschie, M.S., 2009. "On zero-dimensional points curvature in the dynamics of Cantorian-fractal spacetime setting and high energy particle physics," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2725-2732.
    3. Chen, Qingjiang & Liu, Baocang & Cao, Huaixin, 2009. "Construction of a sort of multiple pseudoframes for subspaces with filter banks," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 801-808.
    4. El Naschie, M.S., 2009. "The theory of Cantorian spacetime and high energy particle physics (an informal review)," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2635-2646.
    5. El Naschie, M.S., 2008. "Asymptotic freedom and unification in a golden quantum field theory," Chaos, Solitons & Fractals, Elsevier, vol. 36(3), pages 521-525.
    6. Elokaby, A., 2009. "On the deep connection between instantons and string states encoder in Klein’s modular space," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 303-305.
    7. El Naschie, M.S., 2008. "Deriving the largest expected number of elementary particles in the standard model from the maximal compact subgroup H of the exceptional Lie group E7(-5)," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 956-961.
    8. El-Okaby, Ayman A., 2008. "Exceptional Lie groups, E-infinity theory and Higgs Boson," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1305-1317.
    9. El Naschie, M.S., 2008. "The internal dynamics of the exceptional Lie symmetry groups hierarchy and the coupling constants of unification," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1031-1038.
    10. El Naschie, M.S., 2009. "Curvature, Lagrangian and holonomy of Cantorian-fractal spacetime," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 2163-2167.
    11. Marek-Crnjac, L., 2008. "Lie groups hierarchy in connection with the derivation of the inverse electromagnetic fine structure constant from the number of particle-like states 548, 576 and 672," Chaos, Solitons & Fractals, Elsevier, vol. 37(2), pages 332-336.
    12. El Naschie, M.S., 2008. "Removing spurious non-linearity in the structure of micro-spacetime and quantum field renormalization," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 60-64.
    13. El Naschie, M.S., 2008. "A new look at quarks confinement," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1170-1172.
    14. El Naschie, M.S., 2009. "Higgs mechanism, quarks confinement and black holes as a Cantorian spacetime phase transition scenario," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 869-874.
    15. El Naschie, M.S., 2008. "Fuzzy knot theory interpretation of Yang–Mills instantons and Witten’s 5-Brane model," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1349-1354.
    16. El Naschie, M.S., 2007. "Feigenbaum scenario for turbulence and Cantorian E-infinity theory of high energy particle physics," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 911-915.
    17. El Naschie, M.S., 2007. "On the universality class of all universality classes and E-infinity spacetime physics," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 927-936.
    18. El Naschie, M.S., 2008. "Deriving quarks confinement from the topology of quantum spacetime and heterotic string theory," Chaos, Solitons & Fractals, Elsevier, vol. 36(2), pages 193-195.
    19. El Naschie, M.S., 2008. "Quarks confinement," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 6-8.
    20. El Naschie, M.S., 2008. "Bounds on the number of possible Higgs particles using grand unification and exceptional Lie groups," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 633-637.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:41:y:2009:i:5:p:2787-2789. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.